Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper-acetate, degradation product

For the spectrophotometric method, the evolved carbon disulfide is reacted with copper acetate and diethylamine to form a yellow copper complex which can be measured at 435 nm." The recoveries range between 70 and 90%. Reproducibility of this method was improved by reducing the time and the mode of sample pretreatment. Since all alkylenebis(dithiocarbamates) decompose to carbon disulfide by acid degradation, the above analytical methods are not selective. The result is the measured total residues of all alkylenebis(dithiocarbamates) related products. However, this method is recommended as standard method S15 for alkylenebis(dithiocarbamates) by the German Research Association. ... [Pg.1090]

The copper-catalyzed decomposition of diazoacetic ester in the presence of pyrrole was first described in 1899 and later investigated in more detail by Nenitzescu and Solomonica. Ethyl pyrrole-2-acetate (13), the normal product of electrophilic substitution, was obtained in 50% yield and was degraded to 2-methylpyrrole. Similarly iV -methylpyrrole with two moles of diazoacetic ester gave, after hydrolysis, the 2,5-diacetic acid (14) while 2,3,5-trimethylpyrrole gave, after degradation, 2,3,4,5-tetramethylpyrrole by substitution of ethoxycarbonylcarbene at the less favored )3-position. Nenitzescu and Solomonica also successfully treated pyrroles with phenyl-... [Pg.65]

When acetaldehyde is oxidized in the presence of copper (II), the noncatalytic reaction between acetaldehyde and peracetic acid may be the main route to acetic acid. Since this reaction is slow, one would expect the presence of a significant concentration of peroxide in the reactor product, and we have confirmed this experimentally. Acetic acid can also be produced by oxidizing acetyl radicals by copper (II) the copper(I) formed could be easily reoxidized by oxygen. The by-products when using copper (II) acetates must be produced mainly by degradation of peracetoxy radicals by Reaction 14 and 16 since peracetic acid decomposition is negligible and the reaction of acetaldehyde with peracetic acid produces essentially only acetic acid. [Pg.380]

Poly(vinyl halides) - The photocatalysed oxidation of PVC has been undertaken in the presence of titanium dioxide and zinc oxide pigments and the extent of dehydrochlorination measured. Acetic and formic acids were major products along with carbon dioxide. Copper(II) dialkyldithiocarbamate complexes are also sensitisers. Photodegradable PVC has also been developed by grafting with benzophenone chromophores. Plasticised PVC also degrades and discolours on irradiation but this is due mainly to the plasticiser. ... [Pg.378]

PTFE increases the decomposition temperature of cadmium oxalate trihy-drate. Moreover, the products of cadmium complex degradation, in turn, increase the temperature at which an intensive degradation of PTFE begins. The thermal decomposition of the highly dispersed copper formate leads to the formation of a metal-polymer composition (20-34% Cu). The maximum on the nanoparticles granulometric composition curve corresponds to 4nm. No chemical interaction between the components was observed. The decomposition of a fine dispersion of palladium hydroxide in polyvinyl chloride (PVC) results in spatial structures with highly dispersed Pd particles (S = 26 m g ) in the nodes. This process increases in the temperature required for complete dehydrochlorination of PVC. The thermolysis of cobalt acetate in the presence of PS, PAA, and poly(methyl vinyl ketone) proceeds... [Pg.127]

Methyl 4,6-O-methylene-o-D-mannopyranoside was the only product isolated from the LiBr-catalised transacetalation of the unprotected methyl glycoside with dimethojqmiethane. Cyclopentylidene derivatives of pentoses have been prepared in moderate yields by treatment of the free sugars with cyclopentanone in the presence of copper (II) sulphate and sulphuric acid. D-Xylose formed the diacetal (11) (also used in Scheme 3 below), whereas from D-ribose the 2,3-monoacetal (12) was obtained. A novel, selective synthesis of (5)-configurated 4,6-pyruvate acetals of methyl D-hexopyranosides is illustrated in Scheme 1. It relies on transacetalation from the dimethyl acetal of 3,4-dimethoxybenzophenone to give, after acetylation, preferentially the intermediate (13) with an axial aryl substituent which, on oxidation, suffers rapid degradation to a carboxylic acid group. ... [Pg.80]

Direct metal-catalyzed oxidation can also be carried out with hexahydro-colupulone (183, Figs. 81 and 112) as substrate. The reaction products are the same as those found in the degradation of the hydroperoxide 207, but the yields are lower. In the presence of copper(ll) acetate, novel oxidized compounds are formed. Compound 274 (Fig. 112) is a light-yellow oil with an absorption maximum at 243 nm, which characterizes a cyclopentene-1,4-dione chromophore. The H NMR spectrum shows... [Pg.301]


See other pages where Copper-acetate, degradation product is mentioned: [Pg.211]    [Pg.493]    [Pg.38]    [Pg.62]    [Pg.203]    [Pg.343]    [Pg.622]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



Acetate production

Copper acetate—

Copper production

© 2024 chempedia.info