Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coordination compounds, electronic

Electron Transfer in Coordination Compounds Electron Transfer Reactions Theory. [Pg.1175]

Asymmetric Synthesis by Homogeneous Catalysis Coordination Chemistry History Coordination Organometallic Chemistry Principles Dihydrogen Complexes Related Sigma Complexes Electron Transfer in Coordination Compounds Electron Transfer Reactions Theory Heterogeneous Catalysis by Metals Hydride Complexes of the Transition Metals Euminescence Luminescence Behavior Photochemistry of Organotransition Metal Compounds Photochemistry of Transition Metal Complexes Ruthenium Organometallic Chemistry. [Pg.4136]

Copper Proteins with Type 1 Sites Cytochrome Oxidase Electron Transfer in Coordination Compounds Electron Transfer Reactions Theory Iron Heme Proteins Electron Transport Iron Heme Proteins, Peroxidases, Catalases Catalase-peroxidases Photosynthesis. [Pg.5412]

Electron correlation is often very important as well. The presence of multiple bonding interactions, such as pi back bonding, makes coordination compounds more sensitive to correlation than organic compounds. In some cases, the HF wave function does not provide even a qualitatively correct description of the compound. If the weight of the reference determinant in a single-reference CISD calculation is less than about 0.9, then the HF wave function is not qualitatively correct. In such cases, multiple-determinant, MSCSF, CASPT2, or MRCI calculations tend to be the most efficient methods. The alternative is... [Pg.288]

Free Radicals. In the formula of a polyatomic radical an unpaired electron(s) is(are) indicated by a dot placed as a right superscript to the parentheses (or square bracket for coordination compounds). In radical ions the dot precedes the charge. In structural formulas, the dot may be placed to indicate the location of the unpaired electron(s). [Pg.214]

The triply connected phosphoms compounds have a lone electron pair that dominates much of the chemistry for these compounds. Triply connected compounds typically exhibit pyramidal symmetry arising fromp hybridization. A considerable amount of sp character may be present as well. Bond angles range near 100° vs 90° theoretical. Tricoordinate compounds typically act as electron donors, forming metal coordination compounds and addition compounds such as H P BF [41593-56-0]. [Pg.358]

The most common oxidation states and corresponding electronic configurations of platiaum are +2 which is square planar, and +4 which is octahedral. Compounds in oxidation states between 0 and +6 [t) exist. Platiaum hydrosilation catalysts are used in the manufacture of siHcone polymers. Several platiaum coordination compounds are important chemotherapeutic agents used for the treatment of cancer. [Pg.183]

The chemistry of Cr(III) in aqueous solution is coordination chemistry (see Coordination compounds). It is dominated by the formation of kineticaHy inert, octahedral complexes. The bonding can be described by Ss]] hybridization, and HteraHy thousands of complexes have been prepared. The kinetic inertness results from the electronic configuration of the Cr ion (41). This type of orbital charge distribution makes ligand displacement and... [Pg.135]

The properties of copper(Il) are quite different. Ligands that form strong coordinate bonds bind copper(Il) readily to form complexes in which the copper has coordination numbers of 4 or 6, such as tetraammine copper(Tl) [16828-95-8] [Cu(NH3)4], and hexaaquacopper(Il) [14946-74-8] [Cu(H,0),p+ ( see Coordination compounds). Formation of copper(Il) complexes in aqueous solution depends on the abiUty of the ligands to compete with water for coordination sites. Most copper(Il) complexes are colored and paramagnetic as a result of the unpaired electron in the 2d orbital (see Copper... [Pg.195]

The copper(I) ion, electronic stmcture [Ar]3t/ , is diamagnetic and colorless. Certain compounds such as cuprous oxide [1317-39-1] or cuprous sulfide [22205-45 ] are iatensely colored, however, because of metal-to-ligand charge-transfer bands. Copper(I) is isoelectronic with ziac(II) and has similar stereochemistry. The preferred configuration is tetrahedral. Liaear and trigonal planar stmctures are not uncommon, ia part because the stereochemistry about the metal is determined by steric as well as electronic requirements of the ligands (see Coordination compounds). [Pg.253]

A coordination compound, or complex, is formed when a Lewis base (ligand) is attached to a Lewis acid (acceptor) by means of a lone-pair of electrons. Where the ligand is composed of a number of atoms, the one which is directly attached to the acceptor is called the donor atom . This type of bonding has already been discussed (p. 198) and is exemplified by the addition compounds formed by the trihalides of the elements of Group 13 (p. 237) it is also the basis of much of the chemistry of the... [Pg.905]

Using the electron-withdrawing pentafluorophenyl group, two types of 5-coordinate compound have been made (Figure 2.108). [Pg.172]

Gas phase U. V. photoelectron spectroscopy as a tool for the investigation of electronic structures of coordination compounds. C. Cauletti and C. Farlani, Comments Inorg. Chem., 1985, 5, 29 (95). [Pg.69]

Earlandite structure, 6,849 Edge-coalesced icosahedra eleven-coordinate compounds, 1, 99 repulsion energy coefficients, 1,33,34 Edta — see Acetic acid, ethylenediaminetetra-Effective atomic number concept, 1,16 Effective bond length ratios non-bonding electron pairs, 1,37 Effective d-orbital set, 1,222 Egta — see Acetic acid,... [Pg.125]


See other pages where Coordination compounds, electronic is mentioned: [Pg.457]    [Pg.120]    [Pg.222]    [Pg.2087]    [Pg.2190]    [Pg.3951]    [Pg.2086]    [Pg.2189]    [Pg.3950]    [Pg.524]    [Pg.457]    [Pg.120]    [Pg.222]    [Pg.2087]    [Pg.2190]    [Pg.3951]    [Pg.2086]    [Pg.2189]    [Pg.3950]    [Pg.524]    [Pg.152]    [Pg.259]    [Pg.248]    [Pg.351]    [Pg.6]    [Pg.161]    [Pg.433]    [Pg.540]    [Pg.183]    [Pg.165]    [Pg.47]    [Pg.114]    [Pg.164]    [Pg.912]    [Pg.286]    [Pg.420]    [Pg.145]    [Pg.208]    [Pg.230]    [Pg.240]   


SEARCH



Coordinates electron

Electron compounds

Electronic compounds

Electronic coordinate

© 2024 chempedia.info