Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conversion to sulfide

Impurities in bromine may be deterrnined quantitatively (54). Weighing the residue after evaporation of a bromine sample yields the total nonvolatile matter. After removing the bromine, chloride ion may be deterrnined by titration with mercuric nitrate, and iodide ion by titration with thiosulfate water and organic compounds may be detected by infrared spectroscopy sulfur may be deterrnined turbidimetricaHy as barium sulfate and heavy metals may be deterrnined colorimetricaHy after conversion to sulfides. [Pg.288]

Aromatic sulfoxides are excellent inhibitors for iron corrosion in acidic media. Several studies have dealt with the inhibition of iron corrosion in H2SO4 using dibenzylsulf-oxide (DBSO). Trabanelli (1989) and Ohno et al. (1993) explained the inhibiting effect of DBSO by its conversion to sulfide on the electrode surface. [Pg.491]

The nickel sulfide is refined by conversion to a sulfate solution and reduction with hydrogen to produce a high purity nickel powder. [Pg.3]

Electrophilic attack on the sulfur atom of thiiranes by alkyl halides does not give thiiranium salts but rather products derived from attack of the halide ion on the intermediate cyclic salt (B-81MI50602). Treatment of a s-2,3-dimethylthiirane with methyl iodide yields cis-2-butene by two possible mechanisms (Scheme 31). A stereoselective isomerization of alkenes is accomplished by conversion to a thiirane of opposite stereochemistry followed by desulfurization by methyl iodide (75TL2709). Treatment of thiiranes with alkyl chlorides and bromides gives 2-chloro- or 2-bromo-ethyl sulfides (Scheme 32). Intramolecular alkylation of the sulfur atom of a thiirane may occur if the geometry is favorable the intermediate sulfonium ions are unstable to nucleophilic attack and rearrangement may occur (Scheme 33). [Pg.147]

By-product processing Hydrogen sulfide Conversion to elemental sulfur or sulfuric acid by liquid absorption, wet oxidation to elemental sulfur, combustion to SO2... [Pg.506]

Primary and secondary amines, double bonds, aldehydes, sulfides and certain aromatic and dihydroaroraatic systems are also oxidized by chromium VI reagents under standard hydroxyl oxidizing conditions. Amines are commonly protected by salt formation or by conversion to amides. Aldehydes and... [Pg.226]

A thioamide of isonicotinic acid has also shown tuberculostatic activity in the clinic. The additional substitution on the pyridine ring precludes its preparation from simple starting materials. Reaction of ethyl methyl ketone with ethyl oxalate leads to the ester-diketone, 12 (shown as its enol). Condensation of this with cyanoacetamide gives the substituted pyridone, 13, which contains both the ethyl and carboxyl groups in the desired position. The nitrile group is then excised by means of decarboxylative hydrolysis. Treatment of the pyridone (14) with phosphorus oxychloride converts that compound (after exposure to ethanol to take the acid chloride to the ester) to the chloro-pyridine, 15. The halogen is then removed by catalytic reduction (16). The ester at the 4 position is converted to the desired functionality by successive conversion to the amide (17), dehydration to the nitrile (18), and finally addition of hydrogen sulfide. There is thus obtained ethionamide (19)... [Pg.255]

The most efficient processes in Table I are for steel and alumintim, mainly because these metals are produced in large amounts, and much technological development has been lavished on them. Magnesium and titanium require chloride intermediates, decreasing their efficiencies of production lead, copper, and nickel require extra processing to remove unwanted impurities. Sulfide ores produce sulfur dioxide (SO2), a pollutant, which must be removed from smokestack gases. For example, in copper production the removal of SO, and its conversion to sulfuric acid adds up to 8(10) JA g of additional process energy consumption. In aluminum production disposal of waste ciyolite must be controlled because of possible fiuoride contamination. [Pg.772]

Due to the presence of hydrocarbons in the gas feed to the burner section, some undesirable reactions occur, such as the formation of carbon disulfide (CS2) and carbonyl sulfide (COS). A good catalyst has a high activity toward H2S conversion to sulfur and a reconversion of COS and CS2 to sulfur and carbon oxides. Mercaptans in the acid gas feed results in an increase in the air demand. For example, approximately 5-13% increase in the air required is anticipated if about 2 mol% mercaptans are present. The increase in the air requirement is essentially a function of the type of mercaptans present. The oxidation of mercaptans could be represented as ... [Pg.117]

Sulfur compounds, whether organic or inorganic in nature, cause sulfidation in susceptible materials. The sulfide film, which forms on the surface of much con-stmction materials at low temperatures, becomes friable and melts at higher temperatures. The presence of molten sulfides (especially nickel sulfide) on a metal surface promotes the rapid conversion to metal sulfides at temperatures where these sulfides are thermodynamically stable. High-alloy materials such as 25% Cr, 20% Ni alloys are widely used, but these represent a compromise between sulfidation resistance and mechanical properties. Aluminum and similar diffusion coatings can be of use. [Pg.900]

The oxidation of heteroatoms and, in particular, the conversion of sulfides to asymmetric sulfoxides has continued to be a highly active field in biocatalysis. In particular, the diverse biotransformations at sulfur have received the majority of attention in the area of enzyme-mediated heteroatom oxidation. This is particularly due to the versatile applicability of sulfoxides as chiral auxiliaries in a variety of transformations coupled with facile protocols for the ultimate removal [187]. [Pg.253]

The enzymatic oxygenation process is of particular value as there is a significant difference in the formation rates of sulfoxides and sulfones. The initial conversion of sulfide to the optically active sulfoxide by an MO is usually very fast compared to the subsequent oxidation step to sulfone, upon which chirality is lost (Scheme 9.26). In many cases, over-oxidation to sulfone is not observed at all when employing MOs. [Pg.253]

Thioazolium ions, as catalysts for conjugate addition of aldehydes, 59, 57 Thiobutyric acid, 55, 129, 131 Thioketals, conversion to vinyl sulfides,... [Pg.122]


See other pages where Conversion to sulfide is mentioned: [Pg.318]    [Pg.39]    [Pg.1474]    [Pg.145]    [Pg.318]    [Pg.39]    [Pg.1474]    [Pg.145]    [Pg.389]    [Pg.80]    [Pg.122]    [Pg.206]    [Pg.120]    [Pg.162]    [Pg.209]    [Pg.180]    [Pg.13]    [Pg.2]    [Pg.1043]    [Pg.52]    [Pg.45]    [Pg.122]    [Pg.256]    [Pg.254]    [Pg.941]    [Pg.122]    [Pg.193]    [Pg.94]   
See also in sourсe #XX -- [ Pg.57 ]




SEARCH



Conversion to vinyl sulfides

Fluoroalkyl disulfides conversion to sulfides

Sulfides conversion

© 2024 chempedia.info