Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Contrast enhancement materials principle

The principle of contrast enhancement by photobleachable layers has been known in photography for quite a long time. New formulations were developed for application in lithography and used for the production of cathode ray tubes More recently, a family of arylnitrones have been investigated and described as effective contrast-enhancing materials (CEM) for use in IC-lithography The photochemical reaction which occurs is a cyclization reaction ... [Pg.92]

The principle of all contrast enhancement systems is to turn otherwise invisible variations in material (density, polarizing ability, and so forth) into differences in perceived light intensity. For embryological specimens, some kind of contrast enhancement is usually extremely useful. For example, with fluorescent preparations, standard counterstains may either quench fluorescence or be autofluorescent themselves. On occasion, however, a particular contrast enhancement may reduce the information within an image for example, Nomarski optics may make small labeled objects (such as cell nuclei) less easy to see. It is always worth viewing a specimen both with and without contrast enhancement before photographing. The use of three common image enhancement systems is described next. [Pg.756]

The catalytic principle of micelles as depicted in Fig. 6.2, is based on the ability to solubilize hydrophobic compounds in the miceUar interior so the micelles can act as reaction vessels on a nanometer scale, as so-called nanoreactors [14, 15]. The catalytic complex is also solubihzed in the hydrophobic part of the micellar core or even bound to it Thus, the substrate (S) and the catalyst (C) are enclosed in an appropriate environment In contrast to biphasic catalysis no transport of the organic starting material to the active catalyst species is necessary and therefore no transport limitation of the reaction wiU be observed. As a consequence, the conversion of very hydrophobic substrates in pure water is feasible and aU the advantages mentioned above, which are associated with the use of water as medium, are given. Often there is an even higher reaction rate observed in miceUar catalysis than in conventional monophasic catalytic systems because of the smaller reaction volume of the miceUar reactor and the higher reactant concentration, respectively. This enhanced reactivity of encapsulated substrates is generally described as micellar catalysis [16, 17]. Due to the similarity to enzyme catalysis, micelle and enzyme catalysis have sometimes been correlated in literature [18]. [Pg.279]

Cross-section structure. An anisotropic membrane (also called asymmetric ) has a thin porous or nonporous selective barrier, supported mechanically by a much thicker porous substructure. This type of morphology reduces the effective thickness of the selective barrier, and the permeate flux can be enhanced without changes in selectivity. Isotropic ( symmetric ) membrane cross-sections can be found for self-supported nonporous membranes (mainly ion-exchange) and macroporous microfiltration (MF) membranes (also often used in membrane contactors [1]). The only example for an established isotropic porous membrane for molecular separations is the case of track-etched polymer films with pore diameters down to about 10 run. All the above-mentioned membranes can in principle be made from one material. In contrast to such an integrally anisotropic membrane (homogeneous with respect to composition), a thin-film composite (TFC) membrane consists of different materials for the thin selective barrier layer and the support structure. In composite membranes in general, a combination of two (or more) materials with different characteristics is used with the aim to achieve synergetic properties. Other examples besides thin-film are pore-filled or pore surface-coated composite membranes or mixed-matrix membranes [3]. [Pg.21]

Mechanism of Proteolioid Vesicle Penetration into Monolayers. The principle conclusion from the penetration studies at the air-water and oil-water interfaces is that intrinsic membrane protein in vesicles greatly facilitates the transfer of material into monolayers. In marked contrast lipid vesicles do not penetrate monolayers to any appreciable extent although some exchange of lipid between a monolayer and the outer lipid layer of a liposome can occur (48.49). It is established that both glycophorin (50) and the anion transporter (51) increase the rate of "flip-flop" when incorporated into bilayers. Thus in the initial encounter between the proteolipid vesicles and the monolayer the protein-enhanced rate of "flip-flop" between the inner and outer halves of the vesicle bilayer would facilitate lipid transfer to the monolayer. The process of redistribution of lipid between vesicle and monolayer would bring the protein into intimate contact with the monolayer leading to penetration. [Pg.150]


See other pages where Contrast enhancement materials principle is mentioned: [Pg.277]    [Pg.148]    [Pg.95]    [Pg.383]    [Pg.242]    [Pg.209]    [Pg.95]    [Pg.11]    [Pg.274]    [Pg.333]    [Pg.71]    [Pg.238]    [Pg.12]    [Pg.1623]    [Pg.12]    [Pg.481]    [Pg.219]    [Pg.29]    [Pg.130]    [Pg.20]    [Pg.229]    [Pg.48]    [Pg.332]   
See also in sourсe #XX -- [ Pg.82 , Pg.83 ]




SEARCH



Contrast enhancement

Contrast enhancement materials

© 2024 chempedia.info