Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluids, constitutive equations

A constitutive equation is a relation between the extra stress (t) and the rate of deformation that a fluid experiences as it flows. Therefore, theoretically, the constitutive equation of a fluid characterises its macroscopic deformation behaviour under different flow conditions. It is reasonable to assume that the macroscopic behaviour of a fluid mainly depends on its microscopic structure. However, it is extremely difficult, if not impossible, to establish exact quantitative... [Pg.3]

The Oldroyd-type differential constitutive equations for incompressible viscoelastic fluids can in general can be written as (Oldroyd, 1950)... [Pg.11]

Other combinations of upper- and lower-convected time derivatives of the stress tensor are also used to construct constitutive equations for viscoelastic fluids. For example, Johnson and Segalman (1977) have proposed the following equation... [Pg.12]

A frequently used example of Oldroyd-type constitutive equations is the Oldroyd-B model. The Oldroyd-B model can be thought of as a description of the constitutive behaviour of a fluid made by the dissolution of a (UCM) fluid in a Newtonian solvent . Here, the parameter A, called the retardation time is de.fined as A = A (r s/(ri + s), where 7]s is the viscosity of the solvent. Hence the extra stress tensor in the Oldroyd-B model is made up of Maxwell and solvent contributions. The Oldroyd-B constitutive equation is written as... [Pg.12]

Single-integral constitutive equations for viscoelastic fluids... [Pg.13]

Phan-Thien, N. and Tanner, R.T., 1977. A new constitutive equation derived from network theory, Non-Newtonian Fluid Mech. 2, 353-365. [Pg.16]

The first finite element schemes for differential viscoelastic models that yielded numerically stable results for non-zero Weissenberg numbers appeared less than two decades ago. These schemes were later improved and shown that for some benchmark viscoelastic problems, such as flow through a two-dimensional section with an abrupt contraction (usually a width reduction of four to one), they can generate simulations that were qualitatively comparable with the experimental evidence. A notable example was the coupled scheme developed by Marchal and Crochet (1987) for the solution of Maxwell and Oldroyd constitutive equations. To achieve stability they used element subdivision for the stress approximations and applied inconsistent streamline upwinding to the stress terms in the discretized equations. In another attempt, Luo and Tanner (1989) developed a typical decoupled scheme that started with the solution of the constitutive equation for a fixed-flow field (e.g. obtained by initially assuming non-elastic fluid behaviour). The extra stress found at this step was subsequently inserted into the equation of motion as a pseudo-body force and the flow field was updated. These authors also used inconsistent streamline upwinding to maintain the stability of the scheme. [Pg.81]

In generalized Newtonian fluids, before derivation of the final set of the working equations, the extra stress in the expanded equations should be replaced using the components of the rate of strain tensor (note that the viscosity should also be normalized as fj = rj/p). In contrast, in the modelling of viscoelastic fluids, stress components are found at a separate step through the solution of a constitutive equation. This allows the development of a robust Taylor Galerkin/ U-V-P scheme on the basis of the described procedure in which the stress components are all found at time level n. The final working equation of this scheme can be expressed as... [Pg.136]

Solution of the flow equations has been based on the application of the implicit 0 time-stepping/continuous penalty scheme (Chapter 4, Section 5) at a separate step from the constitutive equation. The constitutive model used in this example has been the Phan-Thien/Tanner equation for viscoelastic fluids given as Equation (1.27) in Chapter 1. Details of the finite element solution of this equation are published elsewhere and not repeated here (Hou and Nassehi, 2001). The predicted normal stress profiles along the line AB (see Figure 5.12) at five successive time steps are. shown in Figure 5.13. The predicted pattern is expected to be repeated throughout the entire domain. [Pg.157]

For some materials the linear constitutive relation of Newtonian fluids is not accurate. Either stress depends on strain in a more complex way, or variables other than the instantaneous rate of strain must be taken into account. Such fluids are known collectively as non-Newtonian. Many different types of behavior have been observed, ranging from fluids for which the viscosity in the Navier-Stokes equation is a simple function of the shear rate to the so-called viscoelastic fluids, for which the constitutive equation is so different that the normal stresses can cause the fluid to flow in a manner opposite to that predicted for a Newtonian fluid. [Pg.89]

Many industrially important fluids cannot be described in simple terms. Viscoelastic fluids are prominent offenders. These fluids exhibit memory, flowing when subjected to a stress, but recovering part of their deformation when the stress is removed. Polymer melts and flour dough are typical examples. Both the shear stresses and the normal stresses depend on the history of the fluid. Even the simplest constitutive equations are complex, as exemplified by the Oldroyd expression for shear stress at low shear rates ... [Pg.96]

Steady state, fuUy developed laminar flows of viscoelastic fluids in straight, constant-diameter pipes show no effects of viscoelasticity. The viscous component of the constitutive equation may be used to develop the flow rate-pressure drop relations, which apply downstream of the entrance region after viscoelastic effects have disappeared. A similar situation exists for time-dependent fluids. [Pg.640]

Leslie, F. M., Some constitutive equations for anisotropic fluids. Quart J Mech Appl Math, 1966,19(3), 357 370. [Pg.137]

In the preceding categories of flow, the velocity field is deterministic since it can be calculated (at least in principle) from the constitutive equation of the fluid and the experimental boundary conditions. Turbulent flow, on the other hand, is distinctively unpredictable, as was pointed out a century ago by Osborne Reynolds. [Pg.165]

Considink, D. M. 272 Consistency coefficient of fluids 108 Constitutive equations 111 Contact angle and no-slip condition 670 -----boiling 483... [Pg.872]

Even if satisfactory equations of state and constitutive equations can be developed for complex fluids, large-scale computation will still be required to predict flow fields and stress distributions in complex fluids in vessels with complicated geometries. A major obstacle is that even simple equations of state that have been proposed for fluids do not always converge to a solution. It is not known whether this difficulty stems from the oversimplified nature of the equatiorrs, from problems with ntrmerical mathematics, or from the absence of a lamirrar steady-state solution to the eqrratiorrs. [Pg.87]

The couple stress method can be used for modeling a special case of micro-polar fluids, i.e., the two-phase flow, wherein the constitutive equation is given by [22,34-38]... [Pg.76]


See other pages where Fluids, constitutive equations is mentioned: [Pg.8]    [Pg.9]    [Pg.9]    [Pg.11]    [Pg.13]    [Pg.16]    [Pg.18]    [Pg.79]    [Pg.80]    [Pg.89]    [Pg.112]    [Pg.150]    [Pg.150]    [Pg.151]    [Pg.153]    [Pg.156]    [Pg.164]    [Pg.88]    [Pg.89]    [Pg.630]    [Pg.631]    [Pg.652]    [Pg.122]    [Pg.128]    [Pg.128]    [Pg.139]    [Pg.187]    [Pg.360]    [Pg.395]    [Pg.406]    [Pg.406]   
See also in sourсe #XX -- [ Pg.545 , Pg.546 , Pg.547 , Pg.548 , Pg.549 ]




SEARCH



Constitutive equations equation)

© 2024 chempedia.info