Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conjugated materials, nonlinear optical

Another group of conjugated thiophene molecules for future appHcations are those being developed as nonlinear optical (NLO) devices (75). Replacement of benzene rings with thiophene has an enormous effect on the molecular nonlinearity of such molecules. These NLO molecules are able to switch, route, and modulate light. Technology using such materials should become available by the turn of the twenty-first century. [Pg.24]

J. L. Bredas and R. Silby, Conjugated Polymers The Novel Science and Technology of Highly Conducting and Nonlinear Optically Active Materials, Kluwer Academic, Boston, 1991. [Pg.524]

Over the past decade it has been learned that organic materials containing appropriately constituted or substituted conjugation systems may exhibit highly enhanced electronic nonlinear optical polarization responses Since the microscopic second-order... [Pg.27]

Theoretical estimations and experimental investigations tirmly established (J ) that large electron delocalization is a perequisite for large values of the nonlinear optical coefficients and this can be met with the ir-electrons in conjugated molecules and polymers where also charge asymmetry can be adequately introduced in order to obtain non-centrosymmetric structures. Since the electronic density distribution of these systems seems to be easily modified by their interaction with the molecular vibrations we anticipate that these materials may possess large piezoelectric, pyroelectric and photoacoustic coefficients. [Pg.168]

The above conclusions introduce intrinsic limitations to the use of the ID conjugated systems in nonlinear optical devices. Although these may benefit (38) from the high nonlinearities,their response speed will be limited by the motion of such defects. These may also be formed by other means than light and this will clearly have implications on photoelastic, pyroelectric and piezoelectric effects as well. We point out that materials like polydiacetylenes may show appreciable quadrupolar pyroelectric effect (39). [Pg.181]

The linear and nonlinear optical properties of one-dimensional conjugated polymers contain a wealth of information closely related to the structure and dynamics of the ir-electron distribution and to their interaction with the lattice distorsions. The existing values of the nonlinear susceptibilities indicate that these materials are strong candidates for nonlinear optical devices in different applications. However their time response may be limited by the diffusion time of intrinsic conjugation defects and the electron-phonon coupling. Since these defects arise from competition of resonant chemical structures the possible remedy is to control this competition without affecting the delocalization. The understanding of the polymerisation process is consequently essential. [Pg.183]

Phthalocyanines 244 and hemiporphyrins 245 and 246 are aromatic systems. Extended conjugation confers special properties to these molecules that make them building blocks for new molecular organic materials with useful electric and nonlinear optical applications (Scheme 85).288... [Pg.30]

Lee and co-workers reported an interesting example of a conjugated polymer obtained by polymerizing 5-phenyl-2-(propynylamino)-4(57/)-oxazolone in the presence of palladium or platinum chlorides. The authors predict this unique material may have applications for polymer electrolytes, semiconductors, and nonlinear optical (NLO) materials. [Pg.84]

Polysilanes are cr-conjugated polymers composed of Si-Si skeletons and organic pendant groups. They are insulators with filled intramolecular valence bands and empty intramolecular conduction bands. However, because of strong cr conjugation, they have rather narrow band gaps of less than 4 eV [24,25] and are converted to conductors by photoexcitation or by doping electron donors or acceptors. Recently they have attracted much attention because of their potential utility as one-dimensional conductors, nonlinear optical materials, and electroluminescent materials [26-28]. [Pg.627]

Another chemical approach to improve our microscopic understanding of optical nonlinearities is a study of nonlinear optical behavior of sequentially built and systematically derivatized structures. Most past work for third-order nonlinearities have focused on conjugated polymers. This ad hoc approach is not helpful in identifying functionalities necessary to enhance optical nonlinearities. A systematic study and correlation of Y values of systematically varied structure is an important approach for material development. [Pg.69]

To conclude this article, it is hoped that the discussion of relevant issues and opportunities for chemists presented here will sufficiently stimulate the interest of the chemical community. Their active participation is vital for building our understanding of optical nonlinearities in molecular systems as well as for the development of useful nonlinear optical materials. It is the time now to search for new avenues other than conjugation effects to enhance third-order optical nonlinearities. Therefore, we should broaden the scope of molecular materials to incorporate inorganic and organometallic structures, especially those involving highly polarizable atoms. [Pg.71]


See other pages where Conjugated materials, nonlinear optical is mentioned: [Pg.100]    [Pg.166]    [Pg.329]    [Pg.134]    [Pg.535]    [Pg.90]    [Pg.159]    [Pg.105]    [Pg.114]    [Pg.623]    [Pg.1]    [Pg.109]    [Pg.111]    [Pg.188]    [Pg.259]    [Pg.521]    [Pg.557]    [Pg.563]    [Pg.8]    [Pg.2]    [Pg.525]    [Pg.528]    [Pg.162]    [Pg.372]    [Pg.151]    [Pg.17]    [Pg.535]    [Pg.53]    [Pg.329]    [Pg.86]    [Pg.31]    [Pg.151]    [Pg.151]    [Pg.192]    [Pg.261]   


SEARCH



Conjugated material

Conjugated materials, nonlinear optical properties

Conjugation length, nonlinear optics, molecular materials

Material nonlinearities

Nonlinear optical materials

Nonlinear optics materials

Optical material

© 2024 chempedia.info