Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conjugate base strength

Note Acid strength decreases from top to bottom of the table conjugate base strength increases from top to bottom. [Pg.822]

The relationship of acid strength and conjugate base strength for the dissociation reaction... [Pg.567]

The achiral triene chain of (a//-rrans-)-3-demethyl-famesic ester as well as its (6-cis-)-isoiner cyclize in the presence of acids to give the decalol derivative with four chirai centres whose relative configuration is well defined (P.A. Stadler, 1957 A. Escherunoser, 1959 W.S. Johnson, 1968, 1976). A monocyclic diene is formed as an intermediate (G. Stork, 1955). With more complicated 1,5-polyenes, such as squalene, oily mixtures of various cycliz-ation products are obtained. The 18,19-glycol of squalene 2,3-oxide, however, cyclized in modest yield with picric acid catalysis to give a complex tetracyclic natural product with nine chiral centres. Picric acid acts as a protic acid of medium strength whose conjugated base is non-nucleophilic. Such acids activate oxygen functions selectively (K.B. Sharpless, 1970). [Pg.91]

A sufficient concentration of base B is necessary for the removal of a proton of the CH, group. In a first step, the equilibrium in Scheme 20 results, in which the monomeric anhydrobase Bi constitutes the conjugated base of the quaternary salt A,. As has been shown for other rings (24). the equilibrium depends upon the concentration of the different species and the relative strength of the bases B and Bj, and depends also upon the nature of X. [Pg.37]

Effect on Oxide—Water Interfaces. The adsorption (qv) of ions at clay mineral and rock surfaces is an important step in natural and industrial processes. SiUcates are adsorbed on oxides to a far greater extent than would be predicted from their concentrations (66). This adsorption maximum at a given pH value is independent of ionic strength, and maximum adsorption occurs at a pH value near the piC of orthosiUcate. The pH values of maximum adsorption of weak acid anions and the piC values of their conjugate acids are correlated. This indicates that the presence of both the acid and its conjugate base is required for adsorption. The adsorption of sihcate species is far greater at lower pH than simple acid—base equihbria would predict. [Pg.7]

Procedures to compute acidities are essentially similar to those for the basicities discussed in the previous section. The acidities in the gas phase and in solution can be calculated as the free energy changes AG and AG" upon proton release of the isolated and solvated molecules, respectively. To discuss the relative strengths of acidity in the gas and aqueous solution phases, we only need the magnitude of —AG and — AG" for haloacetic acids relative to those for acetic acids. Thus the free energy calculations for acetic acid, haloacetic acids, and each conjugate base are carried out in the gas phase and in aqueous solution. [Pg.430]

An effective experimental design is to measure the pseudo-first-order rate constant k at constant pH and ionic strength as a function of total buffer concentration 6,. Very often the buffer substance is the catalyst. Let B represent the conjugate base form of the buffer. Because pH is constant, the ratio (B]/[BH ] is constant, and the concentrations of both species increase directly with 6 where B, = [B] -t-[BH"]. [Pg.268]

Phenol has different chemical properties from those of typical alcohols. Display the electrostatic potential map for phenol. Does this suggest that phenol is likely to be a stronger or weaker acid than any of the compounds discussed above Compare the electrostatic potential map for 4-nitrophenol to that for phenol. What effect does substitution by nitro have on acid strength Explain your result by considering charge delocalization in the conjugate base. Draw all reasonable Lewis structures for phenoxide anion and for 4-nitrophenoxide anion. Which is more delocalized Is this consistent with experimental pKa s ... [Pg.122]

Table 2.3 Relative Strengths of Some Common Acids and Their Conjugate Bases... Table 2.3 Relative Strengths of Some Common Acids and Their Conjugate Bases...
Bronsted-Lowry acid, 49 conjugate base of, 49 strengths of, 50-52 Bronsted-Lowry base, 49 conjugate acid of, 49 strengths of, 50-52 Brown, Herbert Charles. 223 Butacetin, structure of. 833 1,3-Butadiene, 1,2-addition reactions of, 487-489... [Pg.1289]

The typical strong acid of the water system is the hydrated proton H30+, and the role of the conjugate base is minor if it is a sufficiently weak base, e.g. Cl-, Br-, and C104. The conjugate bases have strengths that vary inversely as the strengths of the respective acids. It can easily be shown that the basic ionisation constant of the conjugate base KR canj is equal to Kw/KA conj, where Kw is the ionic product of water. [Pg.22]

On the above basis it is, in principle, unnecessary to treat the strength of bases separately from acids, since any protolytic reaction involving an acid must also involve its conjugate base. The basic properties of ammonia and various amines in water are readily understood on the Bronsted-Lowry concept. [Pg.32]

To express the relative strengths of an acid and its conjugate base (a conjugate acid-base pair ), we consider the special case of the ammonia proton transfer equilibrium, reaction C, for which the basicity constant was given earlier (Kb = [NH4+l[OH ]/ NH3]). Now let s consider the proton transfer equilibrium of ammonia s conjugate acid, NH4+, in water ... [Pg.529]

By definition, every carbanion possesses an unshared pair of electrons and is therefore a base. When a carbanion accepts a proton, it is converted to its conjugate acid (see Chapter 8). The stability of the carbanion is directly related to the strength of the conjugate acid. The weaker the acid, the greater the base strength and the lower the stability of the carbanion. Here, by stability we mean stability toward a proton donor the lower the stability, the more willing the carbanion is to accept a... [Pg.227]

Acid strength may be defined as the tendency to give up a proton and base strength as the tendency to accept a proton. Acid-base reactions occur because acids are not equally strong. If an acid, say HCI, is placed in contact with the conjugate base of a weaker acid, say acetate ion, the proton will be transferred because the HCI has a greater tendency to lose its proton than acetic acid. That is, the equilibrium... [Pg.327]

The strength of an acid or a base is determined by its tendency to lose or gain protons. A strong acid is a substance which loses protons easily to a base. The conjugate base of a strong acid is a weak base ... [Pg.590]


See other pages where Conjugate base strength is mentioned: [Pg.187]    [Pg.229]    [Pg.229]    [Pg.187]    [Pg.187]    [Pg.187]    [Pg.687]    [Pg.443]    [Pg.170]    [Pg.443]    [Pg.572]    [Pg.700]    [Pg.671]    [Pg.187]    [Pg.229]    [Pg.229]    [Pg.187]    [Pg.187]    [Pg.187]    [Pg.687]    [Pg.443]    [Pg.170]    [Pg.443]    [Pg.572]    [Pg.700]    [Pg.671]    [Pg.35]    [Pg.50]    [Pg.35]    [Pg.52]    [Pg.683]    [Pg.529]    [Pg.533]    [Pg.328]    [Pg.346]    [Pg.349]    [Pg.2]   
See also in sourсe #XX -- [ Pg.493 , Pg.493 ]




SEARCH



Base strength

Bases conjugate

Bases conjugate base

© 2024 chempedia.info