Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conformations static modeling

Generally, the models used for simulation of living polymers can be divided roughly into two classes, focused on static or dynamic properties of the LP or GM. The static models are mainly designed to study equilibrium conformational properties of the polymer chains, critical behavior at the polymerization transition, and molecular weight distribution... [Pg.511]

The strict answer is that the static model, without actions, does not tell us enough. The only real test is whether the system we re modeling behaves (responds to actions) as a client would expect from reading the whole model, actions and all the static part merely sets a vocabulary for the rest. This strict view allows some implementations to conform that might not otherwise. For example, suppose we never specified any actions that used the balance. By the retrieval function rule, we would still have to implement that attribute even though it would make no perceptible difference to clients whether or not it was implemented. [Pg.84]

Within the frame of a program on simulation of the Brownian motion of chain molecules, the conformational static and dynamic properties of a model of PE are studied. In the present paper the same properties are systematically derived by using the RIS theory. As expected, there Is good agreement for static properties such as conformational averages and chain dimensions, in addition the local mobility of the chain Is favorably compared by the aid of the two approaches. [Pg.44]

In the next section we describe the basic models that have been used in simulations so far and summarize the Monte Carlo and molecular dynamics techniques that are used. Some principal results from the scaling analysis of EP are given in Sec. 3, and in Sec. 4 we focus on simulational results concerning various aspects of static properties the MWD of EP, the conformational properties of the chain molecules, and their behavior in constrained geometries. The fifth section concentrates on the specific properties of relaxation towards equilibrium in GM and LP as well as on the first numerical simulations of transport properties in such systems. The final section then concludes with summary and outlook on open problems. [Pg.511]

It has been proposed recently [28] that static friction may result from the molecules of a third medium, such as adsorbed monolayers or liquid lubricant confined between the surfaces. The confined molecules can easily adjust or rearrange themselves to form localized structures that are conformal to both adjacent surfaces, so that they stay at the energy minimum. A finite lateral force is required to initiate motion because the energy barrier created by the substrate-medium system has to be overcome, which gives rise to a static friction depending on the interfacial substances. The model is consistent with the results of computer simulations [29], meanwhile it successfully explains the sensitivity of friction to surface film or contamination. [Pg.182]

The dynamic surface tension of a monolayer may be defined as the response of a film in an initial state of static quasi-equilibrium to a sudden change in surface area. If the area of the film-covered interface is altered at a rapid rate, the monolayer may not readjust to its original conformation quickly enough to maintain the quasi-equilibrium surface pressure. It is for this reason that properly reported II/A isotherms for most monolayers are repeated at several compression/expansion rates. The reasons for this lag in equilibration time are complex combinations of shear and dilational viscosities, elasticity, and isothermal compressibility (Manheimer and Schechter, 1970 Margoni, 1871 Lucassen-Reynders et al., 1974). Furthermore, consideration of dynamic surface tension in insoluble monolayers assumes that the monolayer is indeed insoluble and stable throughout the perturbation if not, a myriad of contributions from monolayer collapse to monomer dissolution may complicate the situation further. Although theoretical models of dynamic surface tension effects have been presented, there have been very few attempts at experimental investigation of these time-dependent phenomena in spread monolayer films. [Pg.60]

Fig. 1 Solid-state NMR structure analysis relies on the 19F-labelled peptides being uniformly embedded in a macroscopically oriented membrane sample, (a) The angle (0) of the 19F-labelled group (e.g. a CF3-moiety) on the peptide backbone (shown here as a cylinder) relative to the static magnetic field is directly reflected in the NMR parameter measured (e.g. DD, see Fig. 2c). (b) The value of the experimental NMR parameter varies along the peptide sequence with a periodicity that is characteristic for distinct peptide conformations, (c) From such wave plot the alignment of the peptide with respect to the lipid bilayer normal (n) can then be evaluated in terms of its tilt angle (x) and azimuthal rotation (p). Whole-body wobbling can be described by an order parameter, S rtlo. (d) The combined data from several individual 19F-labelled peptide analogues thus yields a 3D structural model of the peptide and how it is oriented in the lipid bilayer... Fig. 1 Solid-state NMR structure analysis relies on the 19F-labelled peptides being uniformly embedded in a macroscopically oriented membrane sample, (a) The angle (0) of the 19F-labelled group (e.g. a CF3-moiety) on the peptide backbone (shown here as a cylinder) relative to the static magnetic field is directly reflected in the NMR parameter measured (e.g. DD, see Fig. 2c). (b) The value of the experimental NMR parameter varies along the peptide sequence with a periodicity that is characteristic for distinct peptide conformations, (c) From such wave plot the alignment of the peptide with respect to the lipid bilayer normal (n) can then be evaluated in terms of its tilt angle (x) and azimuthal rotation (p). Whole-body wobbling can be described by an order parameter, S rtlo. (d) The combined data from several individual 19F-labelled peptide analogues thus yields a 3D structural model of the peptide and how it is oriented in the lipid bilayer...
The elegant models of three-dimensional protein structures, such as those shown in figure 11.3, fail in one respect they provide a sense of a static molecule in space. As we learned from very simple structures such as ethane, molecules are dynamic, changing conformations in space rapidly. This is surely true for proteins as well... [Pg.138]

Our "solution value is closer to the 60° mininimum from the statics study. Forcefields such as used by Mardsen et al. are solution equivalent (i.e. contain information on the interactions in aqueous solution). Therefore, their results are not for a truly isolated molecule, but might be expected to be equivalent to our solution model. To allow determinations of conformation in vacuum and other solvents, water information should not appear in the basic potentials. The presence of water information in force fields is a common problem. [Pg.158]

Mislow and Bickart (258) have recently discussed the properties, and specified the limitations and essential features, of models that can be used for the prediction of chirality of a molecular system. In the simplified and idealized representation of molecular stracture, nonessential features are deliberately left out the model summarizes some selected aspects of the system and completely disregards or even falsifies, others. The model must be adequate to the time scale in which the phenomenon is observed. In particular, in mobile conformational systems it should refer to a time-averaged structure. In other words, the model can have a higher symmetry than that observed under static conditions (e.g., by X-ray diffraction in the crystalline state or by NMR under slow exchange conditions) (259). [Pg.67]

The results of the 4D-QSAR case study are interesting and provide large amounts of data about the system of interest, and, unlike static 3D-QSAR methods (CoMFA and SOMFA), 4D-QSAR is able to provide the exact locations of statistically important interaction pharmacophore elements. The ability of this method to overcome the question of What conformation to use and predict the bioactive conformation is impressive and a major reason to use the software. Yet it is the ability to construct manifold models and examine several models for the same alignment that is the true benefit of this method. Add to the list the ability to determine the best alignment scheme (based on statistical and experimental results) and this method will provide more information than one could imagine. This abundance of information is key when troubleshooting results that are not in agreement with current beliefs. [Pg.203]


See other pages where Conformations static modeling is mentioned: [Pg.36]    [Pg.59]    [Pg.168]    [Pg.149]    [Pg.23]    [Pg.291]    [Pg.292]    [Pg.552]    [Pg.59]    [Pg.43]    [Pg.86]    [Pg.91]    [Pg.278]    [Pg.1637]    [Pg.359]    [Pg.11]    [Pg.558]    [Pg.178]    [Pg.13]    [Pg.175]    [Pg.23]    [Pg.39]    [Pg.112]    [Pg.224]    [Pg.825]    [Pg.140]    [Pg.75]    [Pg.390]    [Pg.348]    [Pg.38]    [Pg.157]    [Pg.416]    [Pg.345]    [Pg.230]    [Pg.235]    [Pg.186]    [Pg.272]    [Pg.166]   
See also in sourсe #XX -- [ Pg.121 , Pg.122 , Pg.123 , Pg.124 , Pg.125 , Pg.126 , Pg.127 ]




SEARCH



Conformational models

Conformer model

Model statical

Models conformation

Static models

© 2024 chempedia.info