Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Configuration hydroxyl groups

C21H36O2. M,p. 238°C. There are four isomeric pregnane-3,20-diols differing only in the orientation of the hydroxyl groups at positions 3 and 20 and with the 5/ configuration. Only the 3a,20a occurs naturally. It is formed by reduction of progesterone in the liver and is the chief urinary metabolite of it, being... [Pg.326]

For carbohydrates of the d series the configuration of the anomeric carbon is a if Its hydroxyl group is down p if the hydroxyl group at the anomeric carbon IS up... [Pg.1034]

Notice that the eclipsed conformation of d ribose derived directly from the Fischer pro jection does not have its C 4 hydroxyl group properly oriented for furanose ring forma tion We must redraw it m a conformation that permits the five membered cyclic hemi acetal to form This is accomplished by rotation about the C(3)—C(4) bond taking care that the configuration at C 4 is not changed... [Pg.1035]

Both maltose and cellobiose have a free anomeric hydroxyl group that is not involved in a glycoside bond The configuration at the free anomeric center is variable and may be either a or (3 Indeed two stereoisomeric forms of maltose have been iso lated one has its anomeric hydroxyl group m an equatorial orientation the other has an axial anomeric hydroxyl... [Pg.1047]

Neopentyl glycol, or 2,2-dimethyl-1,3-propanediol [126-30-7] (1) is a white crystalline soHd at room temperature, soluble ia water, alcohols, ethers, ketones, and toluene but relatively iasoluble ia alkanes (1). Two primary hydroxyl groups are provided by the 1,3-diol stmcture, making this glycol highly reactive as a chemical intermediate. The gem-A methy configuration is responsible for the exceptional hydrolytic, thermal, and uv stabiUty of neopentyl glycol derivatives. [Pg.371]

Decarboxylation of sahcyhc acid takes place with slow heating because of the presence of the electronic configuration of the carboxyl group ortho to the hydroxyl group, but does not occur in the other isomers of hydroxyben2oic acid. On rapid heating, sahcyhc acid sublimes because of its low vapor pressure. This property allows commercial separation from the other isomers as a means of purification analogous to distillation. The differences ia the vapor pressures are shown ia Table 4. [Pg.285]

Most substrates, with the exception of hydroxypymvate, have a threo configuration of hydroxyl groups at the C-3 and C-4 positions (139). The new stereocenter formed in TK-catalyzed addition is formed in the threo configuration with high diastereo-selectivity (151). Using TK-catalyzed condensations of hydroxypymvic acid with a number of aldehydes a practical preparative synthesis of L-idose [5934-56-5], L-gulose [6027-89-0], 2-deoxy-L-xylohexose, and... [Pg.346]

Fumaric acid is converted to L-malic acid by hydration in the presence of the enzyme fumamse. From the structure of the substrate and the configuration of the product, it is apparent that the hydroxyl group has been added to the si fiice of one of the carbon atoms of the double bond. Each of the trigonal carbon atoms of an alkene has its fiice specified separately. The molecule of fumaric acid shown below is viewed fixjm the re-re fiice. [Pg.107]

The reactivity of various steroid alcohols decreases in the order primary > secondary (equatorial) > secondary (axial) > tertiary. The only systematic investigation relating to the selective protection of steroidal hydroxyl functions has been carried out with the cathylate (ethyl carbonate) group. Since only equatorial hydroxyl groups form cathylates this ester has been used as a diagnostic tool to elucidate the configuration of secondary alcohols. [Pg.380]

Rao prepared 2a-methyl-5a-cholestan-2i -ol (5) by reaction of methyl-magnesium iodide with 5a-cholestan-2-one (4). The 2i -configuration of the hydroxyl group was established by converting (5) to the 2a-methyl-2j5,19-epoxide (6) with lead tetraacetate and iodine in boiling benzene. [Pg.56]

The configurations assigned to (8) and (9) were established by comparison with the products resulting from epoxidation of 3-methyl-5a-cholest-2-ene followed by reduction with lithium aluminum hydride to the alcohol (9). The usual /ra 5-diaxial epoxide opening requires that the hydroxyl group, formed by reduction, is axial as shown in (9). [Pg.57]

The reaction of diethyl tartrate with sulfur tetrafluonde at 25 °C results in replacement of one hydroxyl group, whereas at 100 °C, both hydroxyl groups are replaced by fluonne to form a,a -difluorosuccinate [762] The stereochemical outcome of the fluonnation of tartrate esters is retention of configuration at one of the chiral carbon atoms and inversion of configuration at the second chiral center [163,164, 165] Thus, treatment ofdimethyl(+)-L-tartrate with sulfur tetrafluonde gives dimethyl meso-a,a difluorosuccinate as the final product [163, 164], whereas dimethyl meso tartrate is converted into a racemic mixture of D- and L-a,a -difluorosuccmates [765] (equation 80)... [Pg.235]

The result of oxidation of 8-hydroxy-2,3-tetrafluorobenzobicyclo[3 2 l]octa-2,6-diene depends on the configuration of the hydroxyl group In the syn isomer, the double bond is not epoxidized by the Jones reagent [5/] (equation 52)... [Pg.337]

Relative to each other, both hydroxyl groups are on the same side in Fischer projections of the erythrose enantiomers. The remaining two stereoisomers have hydroxyl groups on opposite sides in their Fischer projections. They are diastereomers of d- and L-erythrose and are called d- and L-threose. The d and l prefixes again specify the configuration of the highest numbered chirality center. D-Threose and L-threose are enantiomers of each other ... [Pg.1029]

For cabohydrates of the d series, the configuration of the anorneric cabon is a if its hydroxyl group is down, P if the hydroxyl group at the anorneric cabon is up. [Pg.1034]

The rules previously mentioned for assignment of a- and /3-configurations can be readily applied to Haworth projection formulas. For the D-sugars, the anomeric hydroxyl group is below the ring in the a-anomer and above the ring in the /3-anomer. For L-sugars, the opposite relationship holds. [Pg.216]


See other pages where Configuration hydroxyl groups is mentioned: [Pg.395]    [Pg.194]    [Pg.30]    [Pg.395]    [Pg.194]    [Pg.30]    [Pg.202]    [Pg.1046]    [Pg.1061]    [Pg.244]    [Pg.353]    [Pg.32]    [Pg.48]    [Pg.50]    [Pg.51]    [Pg.18]    [Pg.100]    [Pg.105]    [Pg.473]    [Pg.475]    [Pg.120]    [Pg.30]    [Pg.113]    [Pg.162]    [Pg.218]    [Pg.230]    [Pg.230]    [Pg.234]    [Pg.1035]    [Pg.1046]    [Pg.1061]    [Pg.211]    [Pg.214]    [Pg.216]    [Pg.221]   
See also in sourсe #XX -- [ Pg.33 , Pg.65 ]




SEARCH



Surface hydroxyl groups configurations

© 2024 chempedia.info