Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complexes insertion reactions

A mononuclear tantalum-benzyne complex (121) has been prepared by thermolysis of 120 [Eq. (20)].14 An X-ray crystal structure was reported for 121. Bond lengths for the benzyne unit are given in Table III. Complex 121 exhibits a rich insertion chemistry similar to that of Ti, Zr, and Ru benzyne complexes. Insertion reactions of 121 with ethylene, 2-butyne, acetonitrile, and carbon dioxide give 122, 123, 124, and 125, respectively (Scheme 15). Diphenylacetylene does not couple with 121, presumably because of steric constraints. Reagents with acidic protons such as methanol or terminal alkynes cleave the Ta—C bond to give butyl isocyanide and carbon monoxide, but... [Pg.165]

R = CH2CM63. Reactions involving frontside attack usually have comparable rates for neopentyl and methyl complexes. Insertion reactions with dilute solutions of sulphur dioxide may therefore well proceed via a different mechanism to those occurring in liquid sulphur dioxide. It is suggested that under these conditions reaction occurs via a bimolecular electrophilic process of Se2 retention or iSEi inversion (Scheme 6) rather than St2 inversion proposed for insertion in liquid sulphur dioxide. ... [Pg.338]

The chaimel-flow electrode has often been employed for analytical or detection purposes as it can easily be inserted in a flow cell, but it has also found use in the investigation of the kinetics of complex electrode reactions. In addition, chaimel-flow cells are immediately compatible with spectroelectrochemical methods, such as UV/VIS and ESR spectroscopy, pennitting detection of intennediates and products of electrolytic reactions. UV-VIS and infrared measurements have, for example, been made possible by constructing the cell from optically transparent materials. [Pg.1938]

Organometallic Compounds. Mononuclear carbon monoxide complexes of palladium are relatively uncommon because of palladium s high labihty, tendency to be reduced, and competing migratory insertion reactions in the presence of a Pd—C bond (201). A variety of multinuclear compounds... [Pg.182]

Thorium compounds of anionic nitrogen-donating species such as [Th(NR2)4], where R = alkyl or sdyl, are weU-known. The nuclearity is highly dependent on the steric requirements of R. Amides are extremely reactive, readily undergoing protonation to form amines or insertion reactions with CO2, COS, CS2, and CSe2 to form carbamates. Tetravalent thorium thiocyanates have been isolated as hydrated species, eg, Th(NCS)4(H20)4 [17837-16-0] or as complex salts, eg, M4 Th(NCS)g] vvH20, where M = NH, Rb, or Cs. [Pg.38]

The phosphido complex, Th(PPP)4 [143329-04-0], where PPP = P(CH2CH2P(CH2)2)2) has been prepared and fully characterized (35) and represents the first actinide complex containing exclusively metal—phosphoms bonds. The x-ray stmctural analysis indicated 3-3-electron donor phosphides and 1-1-electron phosphide, suggesting that the complex is formally 22-electron. Similar to the amido system, this phosphido compound is also reactive toward insertion reactions, especially with CO, which undergoes a double insertion (35,36). [Pg.38]

This conceptual link extends to surfaces that are not so obviously similar in stmcture to molecular species. For example, the early Ziegler catalysts for polymerization of propylene were a-TiCl. Today, supported Ti complexes are used instead (26,57). These catalysts are selective for stereospecific polymerization, giving high yields of isotactic polypropylene from propylene. The catalytic sites are beheved to be located at the edges of TiCl crystals. The surface stmctures have been inferred to incorporate anion vacancies that is, sites where CL ions are not present and where TL" ions are exposed (66). These cations exist in octahedral surroundings, The polymerization has been explained by a mechanism whereby the growing polymer chain and an adsorbed propylene bonded cis to it on the surface undergo an insertion reaction (67). In this respect, there is no essential difference between the explanation of the surface catalyzed polymerization and that catalyzed in solution. [Pg.175]

CS2 is rather more reactive than CO2 in forming complexes and in undergoing insertion reactions. The field was opened up by G. Wilkinson and his group in 1966 when they showed that [Pt(PPh3)3] reacts rapidly and... [Pg.317]

Photolytically generated carbene, as mentioned above, undergoes a variety of undiscriminated addition and insertion reactions and is therefore of limited synthetic utility. The discovery (3) of the generation of carbenes by the zinc-copper couple, however, makes carbene addition to double bonds synthetically useful. The iodo-methylzinc iodide complex is believed to function by electrophilic addition to the double bond in a three-center transition state giving essentially cis addition. Use of the... [Pg.116]

Contradictory to a carbene mechanism is the high selectivity which is typical for the metathesis reaction. In the case of carbene complexes, side reactions must be expected, such as addition and insertion [Eqs. (38) and (39)] ... [Pg.151]

The insertion reaction between alkenylcarbene complexes and electron-rich alkynes such as 1-alkynylamines (ynamines) leads to mixtures of two regioi-someric cyclopentyl derivatives [78]. Thus, if the insertion occurs on the carbon-metal bond a new aminocarbene complex is produced which evolves to a cyclopentenylmetal derivative. On the other hand, if the insertion reaction occurs on the carbon=carbon double bond of the alkenyl complex, the reaction gives a l-metala-4-amino-l,3,5-triene complex which finally generates a different regioisomer of the cyclopentenylmetal derivative (Scheme 31). [Pg.83]

Iridium chemistry also holds a rare example of a monodentate guanidinate ligand. The monomeric parent amido complex Cp Ir(PMe3)(Ph)(NH2) cleanly undergoes an insertion reaction on treatment with diisopropylcarbodiimide (Scheme 153). Spectroscopic data and an X-ray structural analysis revealed the presence of a nonchelating guanidinate ligand. ... [Pg.285]

A (pentamethylcyclopentadienyl)iridium chelating guanidinate complex has been conveniently prepared by treatment of [Cp IrCl2]2 with N,N, N"-th-p-tolylguanidine and base in THF at room temperature followed by recrystallization of the green product from toluene and pentane (Scheme 154). Insertion reactions of the product with heterocumulenes (diaryl carbodiimides, aryl isocyanates) have been investigated. It was found that the complex serves as highly active catalyst for the metathesis of diaryl carbodiimides with each other and for the more difficult metathesis of diaryl carbodiimides with aryl isocyanates (cf. Section V.C). ... [Pg.285]

The insertion reaction of dimethyl acetylenedicarboxylate (DMAD) into the S-S bond of a cyclic disulfido complex of niobium, Nb(S2)(S2CNEt2)3, takes place to give the corresponding dithiolene complex, Nb S2C2(C02Me)2 (S2CNEt2)3 (Scheme 56) [134]. [Pg.190]

The dinuclear rhenium disulfido complex with n,rj -S2 ligands (ReCp )2(/U-S2)2 (Cp =7j -C5Me4Et) (type IIa2 complex in Fig. 2) undergoes an insertion reaction of acetylene and ethylene into the S-S bond according to Scheme 57. [Pg.190]

The subjects of structure and bonding in metal isocyanide complexes have been discussed before 90, 156) and will not be treated extensively here. A brief discussion of this subject is presented in Section II of course, special emphasis is given to the more recent information which has appeared. Several areas of current study in the field of transition metal-isocyanide complexes have become particularly important and are discussed in this review in Section III. These include the additions of protonic compounds to coordinated isocyanides, probably the subject most actively being studied at this time insertion reactions into metal-carbon bonded species nucleophilic reactions with metal isocyanide complexes and the metal-catalyzed a-addition reactions. Concurrent with these new developments, there has been a general expansion of descriptive chemistry of isocyanide-metal complexes, and further study of the physical properties of selected species. These developments are summarized in Section IV. [Pg.22]


See other pages where Complexes insertion reactions is mentioned: [Pg.134]    [Pg.120]    [Pg.324]    [Pg.401]    [Pg.134]    [Pg.120]    [Pg.324]    [Pg.401]    [Pg.167]    [Pg.358]    [Pg.41]    [Pg.329]    [Pg.333]    [Pg.334]    [Pg.165]    [Pg.175]    [Pg.226]    [Pg.195]    [Pg.16]    [Pg.89]    [Pg.61]    [Pg.82]    [Pg.98]    [Pg.143]    [Pg.144]    [Pg.151]    [Pg.179]    [Pg.234]    [Pg.278]    [Pg.216]    [Pg.221]    [Pg.102]    [Pg.166]    [Pg.197]    [Pg.79]    [Pg.294]    [Pg.29]   
See also in sourсe #XX -- [ Pg.30 , Pg.274 ]




SEARCH



C-H Insertion Reactions of Nitrene Complexes

Carbene complexes insertion reactions with

Carbenoid complexes insertion reactions

Conjugated diene complexes insertion reactions

Dihalo- and monohalocarbene complexes migratory insertion reactions

Dihalocarbene complexes migratory insertion reactions

Insertion reactions

Insertion reactions carbene complexes

Insertion reactions imido complexes

Insertion reactions transition metal complexes

Isocyanide ligands insertion reactions with metal complexes

Metal-alkyne complexes insertion reactions

Nickel complexes insertion reactions

Nitrosyl complexes insertion reactions

Palladium complexes insertion reactions

Platinum complexes insertion reactions

Rhodium complexes carbene insertion reactions

Transitional metal complexes insertion reaction

Zirconium hydride complexes insertion reactions

© 2024 chempedia.info