Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complexation properties

Table 2 shows the present state-of-the-art for the electrical conductivity of doped conjugated polymers. The magnitude of the electrical conductivity in polymers is a complex property determined by many stmctural aspects of the system. These include main-chain stmcture and TT-ovedap, molecular... [Pg.42]

To find the best a priori conditions of analysis, the equilibrium analysis, based on material balances and all physicochemical knowledge involved with an electrolytic system, has been done with use of iterative computer programs. The effects resulting from (a) a buffer chosen, (b) its concentration and (c) complexing properties, (d) pH value established were considered in simulated and experimental titrations. Further effects tested were tolerances in (e) volumes of titrants added in aliquots, (f) pre-assumed pH values on precision and accuracy of concentration measured from intersection of two segments obtained in such titrations. [Pg.83]

Ion-exchange and complexing properties of organosilicon adsorbents were studied on the example of 50 elements of Periodical System. Among synthesized adsorbents it was found an effective complexation afents toward rare-earth elements. The sorption of elements is accompanied by bright display of tetradic effect. Adsorbents were synthesized, which opened wide chances of soi ption isolation and division of rare-earth elements. [Pg.273]

In 1960, Dann, Chiesa and Gates of the Kodak Research Laboratories found that the disulfur analog of then unknown 18-crown-6 resulted from the reaction shown in Eq. (6.3). Since the complexation properties of such substances were not yet recognized, especially as they might apply to transition metals, this early and pioneering work has not had the recognition it probably deserved. [Pg.268]

The metal-ion complexing properties of crown ethers are clearly evident in their-effects on the solubility and reactivity of ionic compounds in nonpolar- media. Potassium fluoride (KF) is ionic and practically insoluble in benzene alone, but dissolves in it when 18-crown-6 is present. This happens because of the electron distribution of 18-crown-6 as shown in Figure 16.2a. The electrostatic potential surface consists of essentially two regions an electron-rich interior associated with the oxygens and a hydrocarbon-like exterior associated with the CH2 groups. When KF is added to a solution of 18-crown-6 in benzene, potassium ion (K ) interacts with the oxygens of the crown ether to for-m a Lewis acid-Lewis base complex. As can be seen in the space-filling model of this... [Pg.669]

Phase-transfer catalysis succeeds for two reasons. First, it provides a mechanism for introducing an anion into the medium that contains the reactive substrate. More important, the anion is introduced in a weakly solvated, highly reactive state. You ve already seen phase-transfer catalysis in another fonn in Section 16.4, where the metal-complexing properties of crown ethers were described. Crown ethers pennit metal salts to dissolve in nonpolai solvents by sunounding the cation with a lipophilic cloak, leaving the anion free to react without the encumbrance of strong solvation forces. [Pg.926]

The synthesis of new polymeric materials having complex properties has recently become of great practical importance to polymer chemistry and technology. The synthesis of new materials can be prepared by either their monomers or modification of used polymers in industry. Today, polystyrene (PS), which is widely used in industrial applications as polyolefins and polyvinylchlorides, is also used for the production of plastic materials, which are used instead of metals in technology. For this reason, it is important to synthesize different PS plastic materials. Among the modification of PS, two methods can be considered, viz. physical and chemical modifications. These methods are extensively used to increase physico-mechanical properties, such as resistance to strike, air, or temperature for the synthesizing of new PS plastic materials. [Pg.259]

A certain crown ether having additional coordination sites for a trasition metal cation (71) changes the transport property for alkali metal cations when it complexes with the transition metal cation 76) (Fig. 13). The fact that a carrier can be developed which has a reversible complexation property for a transition metal cation strongly suggests that this type of ionophore can be applied to the active transport system. [Pg.57]

Application of the reaction to the 2-azidobenzoyl derivative of diethylene glycol monomethyl ether 92, in a mixture of tetrahydrofuran and diethylene glycol monomethyl ether as the nucleophile, affords 2-(2-methoxyethoxy)ethyl 2-[2-(2-methoxyethoxy)ethoxy]-37/-azepine-3-carbo-xylate (93), which displays metal cation complexing properties towards lithium, potassium, and. to a lesser extent, barium and calcium cations.198... [Pg.154]

All the known porphyrin isomers are typical benzoid aromatic compounds which show distinctly porphyrin-like characteristic electronic absorption spectra.13 Also the complexation properties for metal ions, NH tautomerism and the NMR spectra are quite similar to the parent porphyrin structure. [Pg.674]

To ensure quality control material suppliers and developers routinely measure such complex properties as molecular weight and its distribution, crystallinity and crystalline lattice geometry, and detailed fracture characteristics (Chapter 6). They use complex, specialized tests such as gel permeation chromatography (2, 3), wide- and narrow-angle X-ray diffraction, scanning electron microscopy, and high-temperature pressurized solvent reaction tests to develop new polymers and plastics applications. [Pg.300]

Hydrogen bonding and complexing properties of R2S02 and R2SO... [Pg.541]


See other pages where Complexation properties is mentioned: [Pg.13]    [Pg.545]    [Pg.382]    [Pg.48]    [Pg.253]    [Pg.38]    [Pg.41]    [Pg.50]    [Pg.53]    [Pg.331]    [Pg.1]    [Pg.296]    [Pg.297]    [Pg.299]    [Pg.301]    [Pg.304]    [Pg.321]    [Pg.543]    [Pg.545]    [Pg.547]    [Pg.549]    [Pg.551]    [Pg.553]    [Pg.555]    [Pg.557]    [Pg.559]    [Pg.561]    [Pg.563]    [Pg.565]    [Pg.567]    [Pg.569]    [Pg.571]    [Pg.573]    [Pg.575]    [Pg.577]    [Pg.579]    [Pg.581]    [Pg.13]   
See also in sourсe #XX -- [ Pg.195 ]




SEARCH



Complexes, 14 properties

Complexing properties

© 2024 chempedia.info