Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complex Reactivity

The significance of frontier electron densities is limited to the orientation of substitution for a given aromatic system, but this approach has been developed to give two more complex reactivity indices termed superdelocalizabilities and Z values, which indicate the relative reactivities of different aromatic systems. [Pg.6]

Schmidt reaction of ketones, 7, 530 from thienylnitrenes, 4, 820 tautomers, 7, 492 thermal reactions, 7, 503 transition metal complexes reactivity, 7, 28 tungsten complexes, 7, 523 UV spectra, 7, 501 X-ray analysis, 7, 494 1 H-Azepines conformation, 7, 492 cycloaddition reactions, 7, 520, 522 dimerization, 7, 508 H NMR, 7, 495 isomerization, 7, 519 metal complexes, 7, 512 photoaddition reactions with oxygen, 7, 523 protonation, 7, 509 ring contractions, 7, 506 sigmatropic rearrangements, 7, 506 stability, 7, 492 N-substituted mass spectra, 7, 501 rearrangements, 7, 504 synthesis, 7, 536-537... [Pg.524]

Cryptands, 7, 731-761 alkali metal complexes NMR, 7, 740 reactivity, 7, 743-744 alkaline earth complexes reactivity, 7, 743-744 anion complexes, 7, 747-748 applications, 7, 753-761 as biological models, 7, 753-754 bis-tren... [Pg.588]

Diazepines synthesis, 7, 595-620 transition metal complexes reactivity, 7, 28... [Pg.596]

Potential energy hypersurfaces form the basis for the complete description of a reacting chemical system, if they are throughly researched (see also part 2.2). Due to the fact that when the potential energy surface is known and therefore the geometrical and electronical structure of the educts, activated complexes, reactive intermediates, if available, as well as the products, are also known, the characterizations described in parts 3.1 and 3.2 can be carried out in theory. [Pg.192]

Step 4 Chemical Reactivity of Surface Complexes Reactivity with Alcohol and H2O... [Pg.166]

Another type of complex reactivity was observed with [TcO(m< so-DMSMe)2] [97]. When the complex is exposed to bases, the ligand is converted from the meso to the racemic form. This process obviously proceeds by... [Pg.114]

Nonionic/cationic Wool Acid, metal-complex, reactive, chrome... [Pg.182]

Carbyne complex chemistry of osmium and ruthenium is discussed in this section. These studies demonstrate clearly the parallels that exist between the metal-carbon bonds in carbene and carbyne complexes and again emphasize the importance of metal basicity in determining complex reactivity. [Pg.181]

Even if full potential energy surfaces are not calculated, simple EHT calculations, skilfully coupled with orbital symmetry considerations, can provide insight into complex reactivity problems. This is well exemplified by Hoffmann and Stohrer s analysis of substituent effects on the Cope rearrangement (28). [Pg.22]

A rather complex reactivity towards the cyclopropenone system is exhibited by N-nucleophiles. Thus, ammonia reacts with diphenyl cyclopropenone to yield either the enamino aldehyde 323222> or a mixture of the cis and trans isomeric diphenyl azetidinones 522223 depending on the reaction conditions these products result from primary addition of the nucleophile at C,(2 ... [Pg.75]

The rather complex reactivity exhibited by cyclopropenones on interaction with enamines (see p. 74) is not re-found in the reactions of triafulvenes with enamines and ketene acetals. Instead of a (3 + 3) cycloaddition of enamine C=C—N sequence to the CI(2)/C3 bond of triafulvene (as represented by ylide 51 J) the addition of the enamine double bond to triafulvene C /C2 bond (operating with cyclopropenones only as a minor side-reaction) predominates in all reactions hitherto investigated. [Pg.104]

The variation of the interaction energy (both local HSAB and quantum chemical) of NCH-CO, NCH-OC, HCCH-CO, HCCH-OC, FH-CO, FH-OC, HCCH-NCH complexes (reactive atoms are bold) with electric held, as obtained in Ref. [40] is... [Pg.371]

Aspects of borole complex reactivity have been studied in detail, including the behavior of tantalum sandwiches bearing alkyl ligands on the metal.15-17 Complexes such as 6 are best regarded as resonance hybrids where strong B-N 7t-overlap lowers the formal oxidation state of the metal 15 16... [Pg.6]

Aryl- and alkylsulfonyl radicals have been generated from the corresponding iodides and added to, e.g., propadiene (la), enantiomerically enriched (P)-(+)-propa-2,3-diene [(P)-(lc)] and (P)-(-)-cyclonona-l,2-diene [(P)-(lk)] [47]. Diaddition of sulfo-nyl radicals may compete considerably with the monoaddition [48,49]. Also, products of diiodination have been purified from likewise obtained reaction mixtures, which points to a more complex reactivity pattern of these substrates towards cumulated Jt-bonds. An analysis of regioselectivities of arylsulfonyl radical addition to allenes is in agreement with the familiar trend that a-addition occurs in propadiene (la), whereas alkyl-substitution at the cumulated Jt-bond is associated with a marked increase in formation of /3-addition products (Scheme 11.7). [Pg.708]

R. J. Angelici. Basicities of Transition Metal Complexes from Studies of their Heats of Protonation A Guide to Complex Reactivity. Acc. Chem. Res. 1995, 28, 51-60. [Pg.258]

Figure 5.1. Hydrogen combinations of the different elements. An approximate scheme of the complex reactivity behaviour of hydrogen is shown. Notice that in most cases, especially at the right part of the Table, every box may correspond to a large variety of reactions and products, possibly with the formation of a large number of stable and/or metastable compounds. Figure 5.1. Hydrogen combinations of the different elements. An approximate scheme of the complex reactivity behaviour of hydrogen is shown. Notice that in most cases, especially at the right part of the Table, every box may correspond to a large variety of reactions and products, possibly with the formation of a large number of stable and/or metastable compounds.
Reaction kinetics and mechanisms for oxidation of [Fe(diimine)2(CN)2], [Fe(diimine)(CN)4] (diimine = bipy or phen) (and indeed [Fe(CN)6] ) by peroxoanions such as (S20g, HSOs", P20g ) have been reviewed. Reactivity trends have been established, and initial state— transition state analyses carried out, for peroxodisulfate oxidation of [Fe(bipy)2(CN)2], [Fe(bipy)(CN)4] , and [Fe(Me2bsb)(CN)4] in DMSO—water mixtures. Whereas in base hydrolysis of iron(II)-diimine complexes reactivity trends in binary aqueous solvent mixtures are generally determined by hydroxide solvation, in these peroxodisulfate oxidations solvation changes for both partners affect the observed pattern. ... [Pg.456]


See other pages where Complex Reactivity is mentioned: [Pg.2930]    [Pg.218]    [Pg.524]    [Pg.588]    [Pg.588]    [Pg.11]    [Pg.161]    [Pg.44]    [Pg.66]    [Pg.667]    [Pg.265]    [Pg.415]    [Pg.323]    [Pg.71]    [Pg.247]    [Pg.42]    [Pg.31]    [Pg.226]    [Pg.512]   


SEARCH



Complex Reactive

© 2024 chempedia.info