Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complex formation mineral surfaces

Figure I. Schematic representation of possibie arsenic sorption complexes on mineral surfaces (Modifiedfrom Brown, 1990). Outer-sphere (physisorbed) complexes, in which As is fully coordinated by water molecules, are bound to the mineral surface by weak electrostatic forces. Inner-sphere (chemisorbed) complexes are characterized by the formation of one or more chemical bonds between the sorbing As oxoanion and the mineral surface. Surface precipitation refers to the formation of a new phase on the mineral surface. Reprinted with permission. Figure I. Schematic representation of possibie arsenic sorption complexes on mineral surfaces (Modifiedfrom Brown, 1990). Outer-sphere (physisorbed) complexes, in which As is fully coordinated by water molecules, are bound to the mineral surface by weak electrostatic forces. Inner-sphere (chemisorbed) complexes are characterized by the formation of one or more chemical bonds between the sorbing As oxoanion and the mineral surface. Surface precipitation refers to the formation of a new phase on the mineral surface. Reprinted with permission.
Figure 5.1 shows the modelled sorption curve together with the experimental sorption data of phyllite. It is noteworthy that the calculated sorption curve of the phyllite is based exclusively on surface complex formation and surface acidity constants obtained from individual batch experiments with pure mineral phases. No experimental data of phyllite were used for the optimization procedure. The modelling of the associated aqueous phase speciation of uranium(VI) was based on the recommended NEA data set (Grenthe et al., 1992). [Pg.85]

Adsorption of Metal Ions and Ligands. The sohd—solution interface is of greatest importance in regulating the concentration of aquatic solutes and pollutants. Suspended inorganic and organic particles and biomass, sediments, soils, and minerals, eg, in aquifers and infiltration systems, act as adsorbents. The reactions occurring at interfaces can be described with the help of surface-chemical theories (surface complex formation) (25). The adsorption of polar substances, eg, metal cations, M, anions. A, and weak acids, HA, on hydrous oxide, clay, or organically coated surfaces may be described in terms of surface-coordination reactions ... [Pg.218]

The geological process of the formation of serpentine from peridotite probably involves the synthesis of carbon compounds under FTT conditions (see Sect. 7.2.3). The hydrogen set free in the serpentinisation process can react with CO2 or CO in various ways. The process must be quite complex, as CO2 and CO flow through the system of clefts and chasms in the oceanic crust and must thus pass by various mineral surfaces, at which catalytic processes as well as adsorption and desorption could occur. [Pg.193]

Separation of milled solid materials is usually based on differences in their physical properties. Of the various techniques to obtain ore concentrates, those of froth flotation and agglomeration exploit differences in surface activities, which in many cases appear to involve the formation of complexes at the surface of the mineral particles. Separation by froth flotation (Figure 4) depends upon conversion of water-wetted (hydrophilic) solids to nonwetted (hydrophobic) ones which are transported in an oil-based froth leaving the undesired materials (gangue) in an aqueous slurry which is drawn off from the bottom of the separator. The selective conversion of the ore particles to hydrophobic materials involves the adsorption of compounds which are usually referred to as collectors. 4... [Pg.762]

Some emphasis is given in the first two chapters to show that complex formation equilibria permit to predict quantitatively the extent of adsorption of H+, OH , of metal ions and ligands as a function of pH, solution variables and of surface characteristics. Although the surface chemistry of hydrous oxides is somewhat similar to that of reversible electrodes the charge development and sorption mechanism for oxides and other mineral surfaces are different. Charge development on hydrous oxides often results from coordinative interactions at the oxide surface. The surface coordinative model describes quantitatively how surface charge develops, and permits to incorporate the central features of the Electric Double Layer theory, above all the Gouy-Chapman diffuse double layer model. [Pg.7]

The central ion of a mineral surface (in this case we take for example the surface of a Fe(lll) oxide and S-OH corresponds to =Fe-OH) acts as Lewis acid and exchanges its stuctural OH against other ligands (ligand exchange). Table 2.1 lists the most important adsorption (= surface complex formation) equilibria. The following criteria are characteristic for all surface complexation models (Dzombak and Morel, 1990.)... [Pg.15]

Sorption depends on Sorption Sites. The sorption of alkaline and earth-alkaline cations on expandable three layer clays - smectites (montmorillonites) - can usually be interpreted as stoichiometric exchange of interlayer ions. Heavy metals however are sorbed by surface complex formation to the OH-functional groups of the outer surface (the so-called broken bonds). The non-swellable three-layer silicates, micas such as illite, can usually not exchange their interlayer ions but the outside of these minerals and the weathered crystal edges ("frayed edges") participate in ion exchange reactions. [Pg.140]

In surface precipitation cations (or anions) which adsorb to the surface of a mineral may form at high surface coverage a precipitate of the cation (anion) with the constituent ions of the mineral. Fig. 6.9 shows schematically the surface precipitation of a cation M2+ to hydrous ferric oxide. This model, suggested by Farley et al. (1985), allows for a continuum between surface complex formation and bulk solution precipitation of the sorbing ion, i.e., as the cation is complexed at the surface, a new hydroxide surface is formed. In the model cations at the solid (oxide) water interface are treated as surface species, while those not in contact with the solution phase are treated as solid species forming a solid solution (see Appendix 6.2). The formation of a solid solution implies isomorphic substitution. At low sorbate cation concentrations, surface complexation is the dominant mechanism. As the sorbate concentration increases, the surface complex concentration and the mole fraction of the surface precipitate both increase until the surface sites become saturated. Surface precipitation then becomes the dominant "sorption" (= metal ion incorporation) mechanism. As bulk solution precipitation is approached, the mol fraction of the surface precipitate becomes large. [Pg.229]

Hering, J., and W. Stumm (1991), "Fluorescence Spectroscopic Evidence for Surface Complex Formation at the Mineral-Water Interface Elucidation of the Mechanism of Ligand-Promoted Dissolution," Langmuir7, 1567-1570. [Pg.404]

This book deals only with the chemistry of the mineral-water interface, and so at first glance, the book might appear to have a relatively narrow focus. However, the range of chemical and physical processes considered is actually quite broad, and the general and comprehensive nature of the topics makes this volume unique. The technical papers are organized into physical properties of the mineral-water interface adsorption ion exchange surface spectroscopy dissolution, precipitation, and solid solution formation and transformation reactions at the mineral-water interface. The introductory chapter presents an overview of recent research advances in each of these six areas and discusses important features of each technical paper. Several papers address the complex ways in which some processes are interrelated, for example, the effect of adsorption reactions on the catalysis of electron transfer reactions by mineral surfaces. [Pg.1]

Rates of reductive dissolution of transition metal oxide/hydroxide minerals are controlled by rates of surface chemical reactions under most conditions of environmental and geochemical interest. This paper examines the mechanisms of reductive dissolution through a discussion of relevant elementary reaction processes. Reductive dissolution occurs via (i) surface precursor complex formation between reductant molecules and oxide surface sites, (ii) electron transfer within this surface complex, and (iii) breakdown of the successor complex and release of dissolved metal ions. Surface speciation is an important determinant of rates of individual surface chemical reactions and overall rates of reductive dissolution. [Pg.446]

Assuming a correlation between surface complexation and aqueous hydrolysis exists, the trend in strengths of surfaces complexes for An in different oxidation states onto a given mineral would be in the order An4+ > AnC>2+ > An3+ > AnOj. Several authors have provided evidence for linear relations between the first hydrolysis constant of metals and the intrinsic constant associated to the formation of surface species of metals as S-OMamorphous silica (Schindler Stumm 1987), hydrous ferric oxides (Dzombak Morel 1990), aluminum (hydr-)oxides and kaolinite (Del Nero et al. 1997, 1999a). [Pg.550]

A number of attempts have been made to understand the mechanism of the adsorption of chelates on oxide minerals. For instance, IR spectroscopic studies10 have indicated the presence of a basic monosalicylaldoximate copper complex as well as the bis-salicylaldoximate complex on the surface of malachite (basic copper carbonate) treated with salicylaldoxime. However, other workers4 have shown that the copper chelate is partitioned between the surface and dispersed within the solution, and that a dissolution-precipitation process is responsible for the formation of the chelate. Research into the chemistry of the interaction of chelating collectors with mineral surfaces is still in its infancy, and it can be expected that future developments will depend on a better understanding of the surface coordination chemistry involved. [Pg.782]

Clay minerals and clay colloids are the products of the advanced weathering of primary silicates. They are comprised mainly of silica and alumina, often with appreciable amounts of alkali and alkaline earth metals and iron. Most also have varying amounts of water bound to their surfaces and can take on a variety of different chemical and physical properties depending on the amount of water adsorbed. They have the ability to exchange or bind cations and anions and are capable of complex formation with a wide variety of organic molecules. [Pg.116]


See other pages where Complex formation mineral surfaces is mentioned: [Pg.5]    [Pg.234]    [Pg.401]    [Pg.146]    [Pg.220]    [Pg.136]    [Pg.764]    [Pg.147]    [Pg.248]    [Pg.384]    [Pg.7]    [Pg.353]    [Pg.298]    [Pg.299]    [Pg.81]    [Pg.546]    [Pg.549]    [Pg.550]    [Pg.553]    [Pg.554]    [Pg.557]    [Pg.416]    [Pg.389]    [Pg.544]    [Pg.384]    [Pg.244]    [Pg.781]    [Pg.858]    [Pg.860]    [Pg.524]    [Pg.106]    [Pg.119]    [Pg.130]    [Pg.133]    [Pg.98]   
See also in sourсe #XX -- [ Pg.464 , Pg.467 ]




SEARCH



Mineral surfaces

Surface complex

Surface complex formation

Surface complexation

Surface formation

© 2024 chempedia.info