Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formation constants complexes

Table 3. Hydrolysis, Equilibrium, and Complex Formation Constants... Table 3. Hydrolysis, Equilibrium, and Complex Formation Constants...
It has been shown that the effects found are caused by specific solvation of both the PhAA ionogenic and other polar groups by the plasticizers used, as well as by the influence of ion-exchangers nature on the PhAA cations-anionic sites complex formation constants. [Pg.320]

The results with the [16]aneN5-Mg2+ system indicate the formation of a ternary complex according to Eq. (4). The complex formation constant is 5.6 x 104 M 1 at 25 °C... [Pg.131]

Table III. Selected complex formation constants for plutonium (at 25°C and 1=0) (41). Table III. Selected complex formation constants for plutonium (at 25°C and 1=0) (41).
The species [organohn(IV)] (n — 1-3) are considered to be Lewis acids of different strength, depending on the groups bound to the tin atom. As a consequence, they promptly hydrolyze in aqueous solution, as first demonstrated by Tobias. Later studies on the interactions of [MeiSndV)] " with hgands containing different donor atoms ( O, N, S, etc.) necessitated determination of the hydrolysis constants the evaluation of such complex formation constants was based on the data obtained earlier from independent measurements. Some data are compared in Table 1. [Pg.360]

The complex formation between hydroperoxides and HALS derivatives proposed for the preceding reaction was recently postulated by two different groups of investigators. First, Carlsson determined a complex formation constant for +00H and a nitroxide on the basis of ESR measurements—. Secondly, Sedlar and his coworkers were able to isolate solid HALS-hydroperoxide complexes and characterize them by IR measurements. The accelerated thermal decomposition of hydroperoxides observed by us likewise points to complex formation. It is moreover known that amines accelerate the thermal decomposition of hydroperoxides-. Thus Denisov for example made use of this effect to calculate complex formation constants for tert.-butyl hydroperoxide and pyridineitZ.. [Pg.86]

Complex formation constants could also be determined directly from UV spectrophotometric measurements. Addition of tert.-butyl hydroperoxide to a solution of nitroxide I in heptane at RT causes a shift of the characteristic absorption band of NO at 460 nm to lower wavelengths (Fig. 9). This displacement allows calculation of a complex equilibrium constant of 5 1 1/Mol. Addition of amine II to the same solution causes reverse shift of theC NO" absorption band. From this one can estimate a complex formation constant for amine II and +00H of 12 5 1/Mol (23 2 1/Mol was obtained for tert.-butyl hydroperoxide and 2,2,6,6-tetramethylpipe-ridine in ref. 64b). Further confirmation for an interaction between hindered amines and hydroperoxides is supplied by NMR measurements. Figure 10a shows part of the +00H spectrum in toluene-dg (concentration 0.2 Mol/1) with the signal for the hydroperoxy proton at 6.7 ppm. Addition of as little as 0.002 Mol/1 of tetra-methylpiperidine to the same solution results in a displacement and marked broadening of the band (Fig. 10b). [Pg.86]

The selectivity here is directly proportional to complex formation constants and can be estimated, once the latter are known. Several methods are now available for determination of the complex formation constants and stoichiometry factors in solvent polymeric membranes, and probably the most elegant one is the so-called sandwich membrane method [31], Two membrane segments of different known compositions are placed into contact, which leads to a concentration polarized sensing membrane, which is measured by means of potentiometry. The power of this method is not limited to complex formation studies, but also allows one to quantify ion pairing, diffusion, and coextraction processes as well as estimation of ionic membrane impurity concentrations. [Pg.106]

Theoretical insight into the interfacial charge transfer at ITIES and detection mechanism of this type of sensor were considered [61-63], In case of ionophore assisted transport for a cation I the formation of ion-ionophore complexes in the organic (membrane) phase is expected, which can be described with the appropriate complex formation constant, /3ILnI. [Pg.118]

The main classes of plasticizers for polymeric ISEs are defined by now and comprise lipophilic esters and ethers [90], The regular plasticizer content in polymeric membranes is up to 66% and its influence on the membrane properties cannot be neglected. Compatibility with the membrane polymer is an obvious prerequisite, but other plasticizer parameters must be taken into account, with polarity and lipophilicity as the most important ones. The nature of the plasticizer influences sensor selectivity and detection limits, but often the reasons are not straightforward. The specific solvation of ions by the plasticizer may influence the apparent ion-ionophore complex formation constants, as these may vary in different matrices. Ion-pair formation constants also depend on the solvent polarity, but in polymeric membranes such correlations are rather qualitative. Insufficient plasticizer lipophilicity may cause its leaching, which is especially undesired for in-vivo measurements, for microelectrodes and sensors working under flow conditions. Extension of plasticizer alkyl chains in order to enhance lipophilicity is only a partial problem solution, as it may lead to membrane component incompatibility. The concept of plasticizer-free membranes with active compounds, covalently attached to the polymer, has been intensively studied in recent years [91]. [Pg.124]

EDTA complexes of trivalent metals can be extracted successively with liquid anion exchangers such as Aliquat 336-S by careful pH control. Mixtures of lanthanides can be separated by exploiting differences in their EDTA complex formation constants. [Pg.63]

Based upon analogies between surface and molecular coordination chemistry outlined in Table 1, we have recently set forth to investigate the interaction of surface-active and reversibly electroactive moieties with the noble-metal electrocatalysts Ru, Rh, Pd, Ir, Pt and Au. Our interest in this class of compounds is based on the fact that chemisorption-induced changes in their redox properties yield important information concerning the coordination/organometallic chemistry of the electrode surface. For example, alteration of the reversible redox potential brought about by the chemisorption process is a measure of the surface-complex formation constant of the oxidized state relative to the reduced form such behavior is expected to be dependent upon the electrode material. In this paper, we describe results obtained when iodide, hydroquinone (HQ), 2,5-dihydroxythiophenol (DHT), and 3,6-dihydroxypyridazine (DHPz), all reversibly electroactive... [Pg.529]

Chromium(II) chloride, 6 528t, 531, 564t Chromium(III) chloride, 6 532 physical properties, 6 528t Chromium(IV) chloride, 6 535 Chromium(III) chloride hexahydrate, physical properties, 6 528t Chromium chromate coatings, 76 219—220 Chromium complexes, 9 399 Chromium compounds, 6 526-571 analytical methods, 6 547-548 economic aspects, 6 543-546 environmental concerns, 6 550—551 health and safety factors, 6 548-550 hydrolysis, equilibrium, and complex formation constants, 6 530t manufacture, 6 538-543... [Pg.183]

The equilibrium constant for reaction 5 depends on the complex formation constant, the association constant of C in the membrane and on the distribution coefficients of H+, and ions between the organic membrane phase and aqueous sample solution, e.g. [Pg.768]

The [TcO(OH2)(CN)4] complex is, as shown by the complex formation constants in Table II, more reactive than the corresponding complexes of either the Re(V) or W(IV). This, coupled with the fact that the dinuclear species [Tc203(CN)8]4 is formed rapidly whenever there are appreciable amounts of the [TcO(OH)(CN)4]2 complex present (71), i.e., below pH ca. 5.5, prohibits any experiment around these acidic conditions. A marked difference in the [H+] dependence for the Tc(V) compared to the above-mentioned Re(V) and W(IV) systems originates from the fact that the Tc(V) is much more reactive and had to be studied at pH values significantly higher than the )Ka2 value of ca. 4. This yielded results similar to the insert (a) in Fig. 16 for the rhenium(V) and only the exchange rate constants and the activation parameters for the hydroxo oxo complex for Tc(V) could thus be obtained (Table V). [Pg.95]

Stability constants (ethylendiamine, glycinate, oxalate), surface complex formation constants and solubility products (sulfides) of transition ions. The surface complex formation constant is for the binding of metal ions to hydrous ferric oxide =Fe-OH + Me2+ =FeOMe++ H+ K. ... [Pg.32]

Correcting Surface Complex Formation Constants for Surface Charge... [Pg.67]

We resume the problem discussed in Example 2.2 and solve the same problem, but now we correct for electrostatic effects. Sumarizing the problem Calculate the pH dependence of the binding of a) a metal ion Me2+, and b) of a ligand A to a hydrous oxide, SOH, and compare the effect of a charged surface at an ionic strength I = 0.1. A specific surface area of 10 g m 2 10 4 mol surface sites per gram ( 6 sites nnrr2) concentration used 1 g e-1 (10 4 mol surface sites per liter solution). As before (Example 2.2) the surface complex formation constants are log Kj = -1 and log K = 5, respectively. [Pg.71]

The conditions for the validity of a Langmuir type adsorption equilibrium are i) thermal equilibrium up to the formation of a monolayer, 0 = 1 ii) the energy of adsorption is independent of 0, (i.e., equal activity of all surface sites). There is no difference between a surface complex formation constant and a Langmuir adsorption... [Pg.91]

The Langmuir equation is derived here from application of the mass law, in a similar way as the surface complex formation equilibria were derived in Chapter 2. In principle at a constant pH there is no difference between a Langmuir constant and a surface complex formation constant. [Pg.91]


See other pages where Formation constants complexes is mentioned: [Pg.266]    [Pg.121]    [Pg.259]    [Pg.283]    [Pg.330]    [Pg.457]    [Pg.225]    [Pg.345]    [Pg.403]    [Pg.5]    [Pg.110]    [Pg.150]    [Pg.106]    [Pg.77]    [Pg.90]    [Pg.97]    [Pg.371]    [Pg.645]    [Pg.652]    [Pg.389]    [Pg.67]    [Pg.68]    [Pg.70]    [Pg.71]    [Pg.72]    [Pg.74]   
See also in sourсe #XX -- [ Pg.73 ]

See also in sourсe #XX -- [ Pg.211 , Pg.212 , Pg.215 , Pg.220 ]

See also in sourсe #XX -- [ Pg.128 ]




SEARCH



Complexes constants

Complexing constants

Complexity constant

Constants complexation, formation

Formation constant

© 2024 chempedia.info