Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compatibilized

Compatibility tests Compatibility value C o mp atib ill 2 ati o n Compatibilizers... [Pg.241]

Blends with good mechanical properties can be made from DMPPO and polymers with which DMPPO is incompatible if an appropriate additive, compatibilizing agent, or treatment is used to increase the dispersion of the two phases. Such blends include mixtures of DMPPO with nylon, polycarbonate, polyester, ABS, and poly(phenylene sulfide). [Pg.330]

Fig. 6. Illustration of (a) compatibiLization of immiscible blends of polymers and B by block or graft copolymers and (b) the subsequent modification of... Fig. 6. Illustration of (a) compatibiLization of immiscible blends of polymers and B by block or graft copolymers and (b) the subsequent modification of...
The additive approach to compatibilization is limited by the fact that there is a lack of economically viable routes for the synthesis of suitable block and graft copolymers for each system of interest. The compatihilizer market is often too specific and too small to justify a special synthetic effort. [Pg.415]

Moreover, commercially available triblock copolymers designed to be thermoplastic elastomers, not compatihilizers, are often used in Heu of the more appealing diblock materials. Since the mid-1980s, the generation of block or graft copolymers in situ during blend preparation (158,168—176), called reactive compatibilization, has emerged as an alternative approach and has received considerable commercial attention. [Pg.415]

Blends that contain no nylon can also be prepared by reactive compatibilization. However, interest in these systems has been limited somewhat by lack of control of the reaction pathways. Eor polyester-based systems, epoxide functionaHty appears to be an effective chemistry, involving reaction of the polyester chain ends (183,184). [Pg.415]

Tables 5 and 6 summarize key properties and appHcations for miscible and immiscible blends which are either commercial as of 1996 or were commercialized in the past (2,314—316,342,343). Most of the Hsted blends contain only two primary components, although many are compatibiLized and impact-modified. Consequently, an immiscible system consisting of two primary components or phases may contain impact modifiers for each phase and a compatihilizer copolymer, for a total of five or more components. Tables 5 and 6 summarize key properties and appHcations for miscible and immiscible blends which are either commercial as of 1996 or were commercialized in the past (2,314—316,342,343). Most of the Hsted blends contain only two primary components, although many are compatibiLized and impact-modified. Consequently, an immiscible system consisting of two primary components or phases may contain impact modifiers for each phase and a compatihilizer copolymer, for a total of five or more components.
Block copolymers have become commercially valuable commodities because of their unique stmcture—property relationships. They are best described in terms of their appHcations such as thermoplastic elastomers (TPE), elastomeric fibers, toughened thermoplastic resins, compatibilizers, surfactants, and adhesives (see Elastot rs, synthetic—thermoplastic). [Pg.185]

A large number of hard polymer/elastomer combinations made by the last technique have been investigated (30). In some cases, the components are technologically compatibilized by use of a grafting reaction, but usually a fine dispersion of the two phases is formed that is sufficient to give the product the properties of a thermoplastic elastomer. [Pg.15]

Alloys exhibit physical properties, the values of which are typically the weighted average of those of its constituents. In particular, the blend exhibits a single glass-transition temperature, often closely obeying semitheoretically derived equations. Blends of two compatibiLized immiscible polymers exhibit physical properties which depend on the physical arrangement of the constituents and thus maybe much closer to those of one of the parent resins. They will also typically exhibit the two glass-transition temperatures of their constituent resins. [Pg.277]

Numerous reports of comparable levels of success in correlating adhesion performance with the Scatchard-Hildebrand solubility parameters can be found in the literature [116,120-127], but failures of this approach have also been documented [128-132J. Particularly revealing are cases in which failure was attributed to the inability of the Scatchard-Hildebrand solubility parameter to adequately account for donor-acceptor (acid-base) interactions [130,132]. Useful reviews of the use of solubility parameters for choosing block copolymer compatibilizers have been prepared by Ohm [133] and by Gaylord [134]. General reviews of the use of solubility parameters in polymer science have been given by Barton [135], Van Krevelen [114], and Hansen [136]. [Pg.54]

Consider the incompatible A/B polymer interface shown in Fig. 16. In the absence of compatibilizers, the interface is very weak such that the strength can be described by the nail solution as [11... [Pg.393]

Fig. 16. A/B incompatible interface of width X, with E di-block compatibilizers of length L. Fig. 16. A/B incompatible interface of width X, with E di-block compatibilizers of length L.
Polypropylene block and graft copolymers are efficient blend compatibilizers. These materials allow the formation of alloys, for example, isotactic polypropylene with styrene-acrylonitrile polymer or polyamides, by enhancing the dispersion of incompatible polymers and improving their interfacial adhesion. Polyolefinic materials of such types afford property synergisms such as improved stiffness combined with greater toughness. [Pg.164]


See other pages where Compatibilized is mentioned: [Pg.482]    [Pg.441]    [Pg.415]    [Pg.415]    [Pg.415]    [Pg.415]    [Pg.415]    [Pg.415]    [Pg.416]    [Pg.423]    [Pg.482]    [Pg.251]    [Pg.187]    [Pg.271]    [Pg.277]    [Pg.668]    [Pg.104]    [Pg.44]    [Pg.44]    [Pg.398]    [Pg.399]    [Pg.413]    [Pg.720]    [Pg.724]    [Pg.144]    [Pg.464]    [Pg.470]    [Pg.472]    [Pg.475]    [Pg.476]    [Pg.522]    [Pg.582]    [Pg.589]    [Pg.591]    [Pg.591]    [Pg.591]    [Pg.592]   
See also in sourсe #XX -- [ Pg.65 ]




SEARCH



Compatibilization

Compatibilizers

Compatibilizing

© 2024 chempedia.info