Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Common cause failure analysis barriers

A general approach to common cause failure analysis is to identify critical systems or components and then use energy trace and barrier analysis (ETBA) to evaluate vulnerability to common environmental hazards, unwanted energy flows, and barrier failures (see Chapter 13). [Pg.262]

Step 2 The safety classification of structures, systems and components reflects the internal postulated events and external events as set forth in the safety analysis of the plant (box (3) of Fig. 1). The definition of the defence in depth levels and barriers [2], the application of the single failure criterion and the assessment of the potential for common cause failures are identified in box (2) of Fig. 1 [19], bearing in mind the categorization of the facility. Next is the evaluation of the need for emergency procedures, both on and off the site. This is followed by identification of the internal events to be considered as a consequence of an external event or as contemporaneous to an external event, and therefore of the safety functions to be maintained in case of an external event (e.g. cooling of radioactive material, reactivity control, confinement). [Pg.28]

Laundry lists of analyses frequently mix types of analyses (preliminary hazard analysis, system hazard analysis, and operating hazard analysis) with the methods or techniques for performing analyses (fault tree analysis, energy trace and barrier analysis, failure modes and effects analysis, common cause analysis, change analysis, and so on). Whether fault hazard analysis is a type or a method depends upon the reference in use. For all practical purposes, fault hazard analysis and system (or subsystem) hazard analysis seem to be the same thing, which is apparently called gross hazard analysis occasionally. [Pg.45]

The recommended techniques for preliminary hazard analysis are energy trace and barrier analysis (ETBA) and failure modes and effects analysis (FMEA). Recommended techniques for system and subsystem hazard analyses are FMEA, fault tree analysis (FTA), common cause analysis, sneak circuit analysis (for electrical, electronic, and some hydraulic or pneumatic circuits) and, of course, software hazard analysis for software. [Pg.68]


See other pages where Common cause failure analysis barriers is mentioned: [Pg.43]   
See also in sourсe #XX -- [ Pg.45 , Pg.46 ]




SEARCH



Common Cause Failure

Failure causes

© 2024 chempedia.info