Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Combinatorial Libraries of Selectors for HPLC

After this feasibility test, a library consisting of 50 types of beads each containing a different dipeptide selector attached through its C-terminal group was prepared and screened (Fig. 3-6) [84]. The first amino acid residue (aa 1) was chosen from a [Pg.73]

A number of interesting conclusions could be drawn from the screening. For example, the amide hydrogen atom at the second amino acid residue close to the [Pg.73]

The screening was performed in a way similar to that of Welch, except that it involved the use of a spectropolarimeter instead of chiral chromatography to determine the selectivity. Equal amounts of the target racemate 17 were added into each of the 16 wells containing beads and the ellipticity of the supernatant liquid in each well was measured after equilibrating for 24 h at the wavelength of the maximum adsorption (260 nm). Knowing the specific ellipticity of one enantiomerically pure [Pg.76]

The two best selectors resulting from Li s screening, DNB-L-ala and DNB-L-leu, were then prepared on a larger scale, attached to silica beads modified with 3-amino-propyl-triethoxysilane, and the CSPs were packed into columns. Respective separation factors of 4.7 and 12 were found for the separation of racemic naphthyl leucine ester 17 using these CSPs. [Pg.77]

In order to perform such a correlation, our library was screened using a reciprocal CSP with an arbitrary bound chiral target (L)-(3,5-dinitrobenzoyl) leucine (Fig. 3-11). [Pg.78]


Finally, libraries aimed to chiral resolution of racemates will be covered here in particular, the use of chiral stationary phases (CSPs) has recently been reported for the identification of materials to be used for chiral separation of racemates by HPLC. The group of Frechet reported the selection of two macroporous poly methacrylate-supported 4-aryl-1,4-dihydropyrimidines (DHPs) as CSPs for the separation of amino acid, anti-inflammatory drugs, and DHP racemates from an 140-member discrete DHP library (214,215) as well as a deconvolutive approach for the identification of the best selector phase from a 36-member pool library of macroporous polymethacrylate-grafted amino acid anilides (216,217). Welch and co-workers (218,219) reported the selection of the best CSP for the separation of a racemic amino acid amide from a 50-member discrete dipeptide iV-3,5-dinitrobenzoyl amide hbrary and the follow-up, focused 71-member library (220). Wang and Li (221) reported the synthesis and the Circular Dichroism- (CD) based screening of a 16-member library of CSPs for the HPLC resolution of a leucine ester. Welch et al. recentiy reviewed the field of combinatorial libraries for the discovery of novel CSPs (222). Dyer et al. (223) reported an automated synthetic and screening procedure based on Differential Scanning Calorimetry (DSC) for the selection of chiral diastereomeric salts to resolve racemic mixtures by crystallization. Clark Still rejxrrted another example which is discussed in detail in Section 9.5.4. [Pg.486]

Our group also demonstrated another combinatorial approach in which a CSP carrying a library of enantiomerically pure potential selectors was used directly to screen for enantioselectivity in the HPLC separation of target analytes [93, 94]. The best selector of the bound mixture for the desired separation was then identified in a few deconvolution steps. As a result of the parallelism advantage , the number of columns that had to be screened in this deconvolution process to identify the single most selective selector CSP was much smaller than the number of actual selectors in the library. [Pg.85]


See other pages where Combinatorial Libraries of Selectors for HPLC is mentioned: [Pg.71]    [Pg.71]    [Pg.73]    [Pg.75]    [Pg.77]    [Pg.79]    [Pg.81]    [Pg.83]    [Pg.85]    [Pg.87]    [Pg.89]    [Pg.6]    [Pg.85]    [Pg.71]    [Pg.71]    [Pg.73]    [Pg.75]    [Pg.77]    [Pg.79]    [Pg.81]    [Pg.83]    [Pg.85]    [Pg.87]    [Pg.89]    [Pg.6]    [Pg.85]    [Pg.314]   


SEARCH



Combinatorial library

Selectors

© 2024 chempedia.info