Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Collision number intramolecular

EXPERIMENTAL COLLISION NUMBERS FOR INTRAMOLECULAR VIBRATIONAL ENERGY... [Pg.221]

An important clue concerning the nature of the constraints on collision induced intramolecular vibrational relaxation can be obtained from the data of Chemoff and Rice. Table I displays the rate constants for processes involving different changes in vibrational quantum number in the Ar aniline system. Despite the uncertainties in the values of the entries it is clear that the rate of transfer of a vibrational quantum is independent of... [Pg.253]

Collision-induced intramolecular vibration-to-rotation energy transfer appears to be inefficient. The evidence for this inference comes from the study of rotational contours in the one collision-induced transition 7 0° in glyoxal. It is found that the emission from 0° has a distribution over rotational transitions that is close to the thermal distribution. But the vibration v-j in glyoxal is a torsional motion, and the axis of torsion very nearly coincides with the smallest axis of inertia of the molecule, so if collision-induced intramolecular vibra-tion-to-rotation transfer were efficient the emission from 0 should have a nonthermal distribution in the quantum number K (which describes quantization of the motion about the smallest axis of inertia). Note, however, that the collision partner used in this experiment was... [Pg.259]

Too little attention is generally paid to the concentrations of the reactants in preparative organic work. With the exception of rare cases (e.g. in intramolecular rearrangements) we are concerned with reactions of orders higher than the first, and in these several kinds of molecules—usually two—are involved. Since, according to the kinetic molecular theory, the velocity of bimolecular reactions is proportional to the number of collisions between the various dissolved molecules and therefore to the product of the concentrations,... [Pg.3]

We denote by G the set of all the experimentally observable quantities (called physical observables) which must be reproduced. Such quantities are, for instance, the collision energy, the quantum numbers defining the intramolecular state (vibrations and the principal quantum number of rotation), the total angular momentum etc... However, there are other dynamical variables which have a clear meaning in Classical Mechanics but correspond to no physical observable because of the Uncertainty Principle. We call them phase variables and denote them globally by g. The phase variables must be given particular values to obtain, at given G, a particular trajectory. Such variables are, for instance, the various intramolecular normal vibrational phases, the intermolecular orientation, the secondary rotation quantum numbers, the impact parameter, etc... Thus we look for relationships of the type qo = qq (G, g) and either qo = qo (G, g) or po = Po (G, g)... [Pg.29]

As has been discussed above, molecular clusters produced in a supersonic expansion are preferred model systems to study solvation-mediated photoreactions from a molecular point of view. Under such conditions, intramolecular electron transfer reactions in D-A molecules, traditionally observed in solutions, are amenable to a detailed spectroscopic study. One should note, however, the difference between the possible energy dissipation processes in jet-cooled clusters and in solution. Since molecular clusters are produced in the gas phase under collision-free conditions, they are free of perturbations from many-body interactions or macro-molecular structures inherent for molecules in the condensed phase. In addition, they are frozen out in their minimum energy conformations which may differ from those relevant at room temperature. Another important aspect of the condensed phase is its role as a heat bath. Thus, excess energy in a molecule may be dissipated to the bulk on a picosecond time-scale. On the other hand, in a cluster excess energy may only be dissipated to a restricted number of oscillators and the cluster may fragment by losing solvent molecules. [Pg.3103]

Early studies of the photophysical radiationless processes of molecular systems were carried out on molecules in condensed media, liquids, rigid matrices, and high-pressure gases. This experimental situation introduces the complication associated with the presence of the possible occurrence of a number of different competing photophysical relaxation processes in the same molecular system in a fashion that mimics the complexity of a full photochemical reaction scheme. In order to study the primary photophysical radiationless transitions, it is optimal to consider experiments in which only the elementary individual processes of interest appear. Such investigations often involve the experimental determination of radiationless transition rates in isolated collision-free molecules. " For instance, collision-free experiments enable the consideration of the important phenomena of electronic relaxation and intramolecular vibrational redistribution. Studies on isolated molecules have greatly contributed to our... [Pg.298]

The efficient quenching of the atomic and molecular fluorescence by collisions has been observed in early studies of the luminescence of gaseous compounds (for a review of early work see Ref. 2). In a large number of cases these processes have been explained by the electronic-to-vibrational energy transfer, charge transfer or excited-complex (excimer or exciplex) formation. There remains, however, an important class of collisional processes corresponding to the essentially intramolecular relaxation induced (or assisted) by collisions with chemically inert partners. In such... [Pg.338]

The collisional fluorescence quenching and phosphorescence induction processes have been later observed for a large number of small and medium-size molecules. The interpretation of these results was however rather confusing collision-induced intersystem crossing considered as a transition from the pure singlet to the pure triplet state is in apparent contradiction with the Wigner rule of spin conservation, at least in the case of light collision partners that cannot affect the intramolecular spin-orbit interaction. [Pg.339]

Overall, these molecular dynamics crystal simulations showed that random, uncorrelated conformational disorder was governed by three processes (1) the intramolecular dynamics leading to local isomeric transition (2) the number of intermolecular collisions and (3) the restrictiveness of the crystal environment [5b]. These initial conformational defects do not corr pond to a potential energy minimum and thus cannot easily be predicted by molecular mechanics calculations. They are the result of the dynamic interaction of skeletal vibrations... [Pg.45]


See other pages where Collision number intramolecular is mentioned: [Pg.257]    [Pg.335]    [Pg.858]    [Pg.512]    [Pg.195]    [Pg.99]    [Pg.156]    [Pg.143]    [Pg.682]    [Pg.702]    [Pg.264]    [Pg.223]    [Pg.340]    [Pg.683]    [Pg.7]    [Pg.7]    [Pg.13]    [Pg.73]    [Pg.267]    [Pg.442]    [Pg.249]    [Pg.650]    [Pg.96]    [Pg.102]    [Pg.168]    [Pg.442]    [Pg.1010]    [Pg.858]    [Pg.293]    [Pg.327]    [Pg.350]    [Pg.312]    [Pg.298]    [Pg.241]    [Pg.266]    [Pg.102]    [Pg.38]    [Pg.731]    [Pg.19]    [Pg.160]   
See also in sourсe #XX -- [ Pg.221 ]




SEARCH



Collision number

Collisions intramolecular

© 2024 chempedia.info