Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Collision function, diffusion

Although long-time Debye relaxation proceeds exponentially, short-time deviations are detectable which represent inertial effects (free rotation between collisions) as well as interparticle interaction during collisions. In Debye s limit the spectra have already collapsed and their Lorentzian centre has a width proportional to the rotational diffusion coefficient. In fact this result is model-independent. Only shape analysis of the far wings can discriminate between different models of molecular reorientation and explain the high-frequency pecularities of IR and FIR spectra (like Poley absorption). In the conclusion of Chapter 2 we attract the readers attention to the solution of the inverse problem which is the extraction of the angular momentum correlation function from optical spectra of liquids. [Pg.6]

In the case of weak collisions, the moment changes in small steps AJ (1 — y)J < J, and the process is considered as diffusion in J-space. Formally, this means that the function /(z) of width [(1 — y2)d]i is narrow relative to P(J,J, x). At t To the latter may be expanded at the point J up to terms of second-order with respect to (/ — /). Then at the limit y -> 1, to — 0 with tj finite, the Feller equations turn into a Fokker-Planck equation... [Pg.20]

Approximation refers to the bringing together of the substrate molecules and reactive functionalities of the enzyme active site into the required proximity and orientation for rapid reaction. Consider the reaction of two molecules, A and B, to form a covalent product A-B. For this reaction to occur in solution, the two molecules would need to encounter each other through diffusion-controlled collisions. The rate of collision is dependent on the temperature of the solution and molar concentrations of reactants. The physiological conditions that support human life, however, do not allow for significant variations in temperature or molarity of substrates. For a collision to lead to bond formation, the two molecules would need to encounter one another in a precise orientation to effect the molecular orbitial distortions necessary for transition state attainment. The chemical reaction would also require... [Pg.27]

The third feature is the recruitment of a molecule, in this case Sos, to the membrane in order to fulfill its function. Both increased local concentrations at the membrane and two-dimensional diffusion of the collision partners, Sos and Ras, lead to enhanced encounter of the two proteins and thus to accelerated nucleotide exchange on Ras. [Pg.68]

Different from conventional chemical kinetics, the rates in biochemical reactions networks are usually saturable hyperbolic functions. For an increasing substrate concentration, the rate increases only up to a maximal rate Vm, determined by the turnover number fccat = k2 and the total amount of enzyme Ej. The turnover number ca( measures the number of catalytic events per seconds per enzyme, which can be more than 1000 substrate molecules per second for a large number of enzymes. The constant Km is a measure of the affinity of the enzyme for the substrate, and corresponds to the concentration of S at which the reaction rate equals half the maximal rate. For S most active sites are not occupied. For S >> Km, there is an excess of substrate, that is, the active sites of the enzymes are saturated with substrate. The ratio kc.AJ Km is a measure for the efficiency of an enzyme. In the extreme case, almost every collision between substrate and enzyme leads to product formation (low Km, high fccat). In this case the enzyme is limited by diffusion only, with an upper limit of cat /Km 108 — 109M. v 1. The ratio kc.MJKm can be used to test the rapid... [Pg.133]

The cumulative functions of the diffusive modes can here also be constructed by using Eq. (60) with trajectories integrated with a numerical algorithm based on the rescaling of time at the singular collisions. The initial position is taken on a small circle around a scattering center at an angle 0 with respect to the... [Pg.106]

The rate coefficient (k2 enc) for the collision of two species is given by 8RT/3Z (where Z is the viscosity of the medium at the reaction temperature), the Smoluchowski equation. This is the maximum possible rate of reaction, which is controlled by the rate at which the two reacting species diffuse together. For nitration in >90% H2S04, where nitric acid is completely ionized, if exclusively the free base nitrates the rate coefficient (k2 fb) would equal k2 obs KJhx (where Ka is the ionization constant of the base, and hx the acidity function that it follows). Thus, if k2 fb> k2 enc free base nitration is precluded, but if... [Pg.188]

The dielectric function of a metal can be decomposed into a free-electron term and an interband, or bound-electron term, as was done for silver in Fig. 9.12. This separation of terms is important in the mean free path limitation because only the free-electron term is modified. For metals such as gold and copper there is a large interband contribution near the Frohlich mode frequency, but for metals such as silver and aluminum the free-electron term dominates. A good discussion of the mean free path limitation has been given by Kreibig (1974), who applied his results to interpreting absorption by small silver particles. The basic idea is simple the damping constant in the Drude theory, which is the inverse of the collision time for conduction electrons, is increased because of additional collisions with the boundary of the particle. Under the assumption that the electrons are diffusely reflected at the boundary, y can be written... [Pg.337]

Estimates of the rotational diffusivity may be made from MD calculations by fitting an exponential function to Legendre polynomials that express the decorrelation of a unit vector that is fixed in the methane coordinate frame (11). The rotational diffusivity was found to increase with concentration (as a result of sorbate-sorbate collisions which act to decorrelate the molecular orientation). The values are of the same order as those for liquid methane and are 2 orders of magnitude larger than those found by Jobic et al. (73) from a quasi-elastic neutron scattering study of methane in NaZSM-5. [Pg.29]

Since the complications due to solvent structure have already been discussed, the remainder of this chapter is mainly devoted to a discussion of the complications introduced into the theory of reaction rates when the collision of solvent molecules does not lead to a complete loss of memory of the molecules about their former velocity. Nevertheless, while such effects are undoubtedly important over some time scale, the differences noted by Kapral and co-workers [37, 285, 286] between the rate kernel for reaction estimated from the diffusion and reaction Green s function and their extended analysis were rather small over times of 10 ps or more (see Chap. 8, Sect. 3.3 and Fig. 40). At this stage, it is a moot point whether the correlation of solvent velocity before collision with that after collision has a significant and experimentally measurable effect on the rate of reaction. The time scale of the loss of velocity correlation is typically less than 1 ps, while even rapid recombination of radicals formed in close proximity to each other occurs over times of 10 ps or more (see Chap. 6, Sect. 3.3). [Pg.320]


See other pages where Collision function, diffusion is mentioned: [Pg.77]    [Pg.43]    [Pg.445]    [Pg.318]    [Pg.209]    [Pg.32]    [Pg.491]    [Pg.229]    [Pg.505]    [Pg.115]    [Pg.458]    [Pg.782]    [Pg.5]    [Pg.76]    [Pg.76]    [Pg.291]    [Pg.992]    [Pg.88]    [Pg.10]    [Pg.333]    [Pg.479]    [Pg.115]    [Pg.392]    [Pg.37]    [Pg.77]    [Pg.155]    [Pg.417]    [Pg.87]    [Pg.120]    [Pg.43]    [Pg.44]    [Pg.157]    [Pg.91]    [Pg.39]    [Pg.107]    [Pg.134]    [Pg.324]    [Pg.355]    [Pg.16]    [Pg.141]   
See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Diffuse functions

Diffusion-collision

© 2024 chempedia.info