Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cold mercury vapour generation analytes

The techniques discussed in this chapter vary in automatability and frequency of use. Thus, while automatic hydride and cold mercury vapour generation are implemented in laboratory-constructed or commercially available dynamic equipment that is straightforward, easy to operate and inexpensive, automating laboratory headspace modes and solid-phase microextraction is rather complicated and commercially available automated equipment for their implementation is sophisticated and expensive. Because of its fairly recent inception, analytical pervaporation lacks commercially available equipment for any type of sample however, its high potential and the interest it has aroused among manufacturers is bound to result in fast development of instrumentation for both solid and liquid samples. This technique, which is always applied under dynamic conditions, has invariably been implemented in a semi-automatic manner to date also, its complete automatization is very simple. [Pg.83]

The techniques dealt with in this chapter are discussed in terms of similarities. For this reason, hydride generation and cold mercury vapour generation are addressed first, notwithstanding the limited scope of this technique as regards analytes — scope that can... [Pg.83]

Gaseous and volatilised analytes can also be easily determined by FAAS and ETAAS. For example, the determination of several elements by the formation of covalent volatile hydrides e.g. arsenic, selenium) and cold vapour generation (mercury and cadmium) is feasible with good analytical sensitivity (see Section 1.4.1.1). [Pg.13]

Ultrasonic slurry formation has been frequently used prior to cold-vapour and hydride generation. Both procedures usually involve a drastic treatment of the slurry to ensure complete transfer of the target species to the liquid phase for subsequent formation of the gas phase — after a normally long standing time — which is the only phase reaching the atomizer in the case of hydride generation and the detection point in the case of mercury vapour formation. The gaseous analytes or their hydrides are most often obtained in a commercial or laboratory-made dynamic flow injection manifold. [Pg.149]

Hydride generation AAS (HGAAS) and cold vapour AAS (CVAAS) are special combinations of chemical separation and enrichment with AAS. In HGAAS the analyte is transformed to a volatile hydride, stripped off by an inert gas and atomized in a quartz tube, flame-in tube etc. About ten elements (As, Se, Bi, Sb etc.) can be determined by this technique. The accuracy and detection limits depend on the proper isolation of the hydride. CVAAS is the universally acknowledged most sensitive method for determination of Hg. The generation of elemental mercury vapour is similar to the hydride generation however the quartz cell may not be heated and this gives the name of the method. [Pg.160]

Initially hydride generation and cold vapour techniques were developed for the quantitative determination of the hydride-forming elements and mercury by atomic absorption spectrometry (Chapters, Sections 6.2 and 6.3), but nowadays these methods are also widely used in plasma atomic emission spectrometry. In the hydride generation technique, hydride-forming elements are more efficiently transported to the plasma than by conventional solution nebulization, and the production and excitation of free atoms and ions in the hot plasma is therefore more efficient. Spectral interferences are also reduced when the analyte is separated from the elements in the sample matrix. Both continuous (FIA) and batch approaches have been used for hydride generation. The continuous method is more frequently used in plasma AES than in AAS. Commercial hydride generation systems are available for various plasma spectrometers. [Pg.191]


See other pages where Cold mercury vapour generation analytes is mentioned: [Pg.84]    [Pg.85]    [Pg.320]    [Pg.89]    [Pg.91]    [Pg.156]    [Pg.81]    [Pg.426]    [Pg.130]    [Pg.208]    [Pg.431]    [Pg.404]    [Pg.130]   
See also in sourсe #XX -- [ Pg.84 ]




SEARCH



Cold mercury vapour generation

Cold vapour generation

Mercury cold vapour

Vapour generation

© 2024 chempedia.info