Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Codons, of DNA

Genetic code - The set of relations between each of the 64 codons of DNA and a specific amino acid (or other genetic instruction). [Pg.105]

As shown in Figure 45.1, the bases appear in complementary pairs, A with T and G with C in this particular example, the sequence for one strand of DNA is A-T-C-G-T- while the other strand is -T-A-G-C-A-. The sequences of the bases attached to the sugar-phosphate backbone direct the production of proteins from amino acids. Along each strand, groups of three bases, called codons, correspond to individual amino acids. For example, in Figure 45.1, the triplet CGT, acting as a codon, would correspond to the amino acid serine. One codon, TAG, indicates where synthesis should begin in the DNA strand, and other codons, such as ATT, indicate where synthesis should stop. [Pg.327]

Cellular protein biosynthesis involves the following steps. One strand of double-stranded DNA serves as a template strand for the synthesis of a complementary single-stranded messenger ribonucleic acid (mRNA) in a process called transcription. This mRNA in turn serves as a template to direct the synthesis of the protein in a process called translation. The codons of the mRNA are read sequentially by transfer RNA (tRNA) molecules, which bind specifically to the mRNA via triplets of nucleotides that are complementary to the particular codon, called an anticodon. Protein synthesis occurs on a ribosome, a complex consisting of more than 50 different proteins and several stmctural RNA molecules, which moves along the mRNA and mediates the binding of the tRNA molecules and the formation of the nascent peptide chain. The tRNA molecule carries an activated form of the specific amino acid to the ribosome where it is added to the end of the growing peptide chain. There is at least one tRNA for each amino acid. [Pg.197]

The use of DNA hybridization just described opens up a novel, uncomplicated, yet powerful strategy for supramolecular synthesis Many different devices are connected to a distinct sequence codon and are subsequently organized on a suitable template strand. The utilization of appropriate nucleic acid scaffolds should even allow the fabrication of highly complex supramolecular structures by means of a modular construction kit. For approximately 20 years, the work of Seeman and coworkers [8,27] have been engaged in the rational construction of ID, 2D, and 3D DNA frameworks. They use branched DNA... [Pg.406]

Sickle cell disease again provides an excellent example of how recombinant DNA technology can be applied to the smdy of human disease. The substitution of T for A in the template strand of DNA in the P-globin gene changes the sequence in the region that corresponds to the sixth codon from... [Pg.409]

Murakami, H., Hohsaka, T. and Sisido, M. (2002) Random insertion and deletion of arbitrary number of bases for codon-based random mutation of DNAs. Nature Biotechnology, 20, 76-81. [Pg.76]

The information contained in the DNA (i.e., the order of the nucleotides) is first transcribed into RNA. The messenger RNA thus formed interacts with the amino-acid-charged tRNA molecules at specific cell organelles, the ribosomes. The loading of the tRNA with the necessary amino acids is carried out with the help of aminoacyl-tRNA synthetases (see Sect. 5.3.2). Each separate amino acid has its own tRNA species, i.e., there must be at least 20 different tRNA molecules in the cells. The tRNAs contain a nucleotide triplet (the anticodon), which interacts with the codon of the mRNA in a Watson-Crick manner. It is clear from the genetic code that the different amino acids have different numbers of codons thus, serine, leucine and arginine each have 6 codewords, while methionine and tryptophan are defined by only one single nucleotide triplet. [Pg.216]

GFP has also been proposed as a successor to the Ames and SOS chromotest. Billinton et al. [8] obtained a reporter system, employed as genotoxicity biosensor, that uses eukaryotic cells (the baker yeast Saccharomyces cerevisiae) instead of bacteria. The strain produces green fluorescent protein, codon optimized for yeast, when DNA damage has occurred. It was demonstrated that the reporter does not falsely respond to chemicals that delay mitosis, and responds appropriately to the genetic regulation of DNA repair. [Pg.274]

A structural gene is a linear sequence of codons which codes for a functional polypeptide, that is, a linear sequence of amino acids. Individual polypeptides may have a structural, enzymatic or regulatory role in the cell. Although the primary structure of DNA is the same in prokaryotes and eukaryotes, there are differences between the genes of these two types of organism, in internal structure, numbers and... [Pg.177]

DNA shuffling A method to exchange portions of DNA among similar genes, in order to select for a certain trait, genetic code The set of rules that decodes nucleotide triplets (codons) into amino acids, which is identical in nearly every organism. [Pg.614]

Figure 20.20 Summary of transcription, RNA processing and polypeptide synthesis. Polymerisation of the DNA template by RNA polymerase produces pre-mRNA (the primary transcript) this is transcription. The pre-mRNA is now processed, which involves capping, polyadenylation, editing and splicing (see text). The resultant mRNA transfers from the nucleus to the cytosol, where amino acids are polymerised to produce a polypeptide using the instructions present in the codons of the mRNA. Figure 20.20 Summary of transcription, RNA processing and polypeptide synthesis. Polymerisation of the DNA template by RNA polymerase produces pre-mRNA (the primary transcript) this is transcription. The pre-mRNA is now processed, which involves capping, polyadenylation, editing and splicing (see text). The resultant mRNA transfers from the nucleus to the cytosol, where amino acids are polymerised to produce a polypeptide using the instructions present in the codons of the mRNA.
Although the amino acid sequence of a protein is defined by the sequence of codons in DNA, it is RNA that participates in the interpretation of this sequence and the subsequent joining together of amino acids. The process starts with the synthesis of mRNA, in a process called transcription (Figure 14.4). [Pg.556]

The mRNA is bound to the smaller 30S subunit of the bacterial ribosome. The mRNA is a transcription of one of the genes of DNA, and carries the information as a series of three-base codons. The message is read (translated) in the 5 to 3 direction along the mRNA molecule. The aminoacyl-tRNA anticodon (UAC) allows binding via hydrogen bonding to the appropriate codon (AUG) on mRNA. In prokaryotes, the first amino acid encoded in the sequence is A-formylmethionine (fMet). Although the codon for initiation (A-formylmethionine) is the same as... [Pg.557]


See other pages where Codons, of DNA is mentioned: [Pg.635]    [Pg.635]    [Pg.570]    [Pg.237]    [Pg.197]    [Pg.198]    [Pg.359]    [Pg.1235]    [Pg.350]    [Pg.405]    [Pg.325]    [Pg.402]    [Pg.136]    [Pg.298]    [Pg.63]    [Pg.135]    [Pg.85]    [Pg.46]    [Pg.48]    [Pg.49]    [Pg.44]    [Pg.231]    [Pg.188]    [Pg.99]    [Pg.72]    [Pg.112]    [Pg.56]    [Pg.57]    [Pg.405]    [Pg.57]   
See also in sourсe #XX -- [ Pg.1171 ]




SEARCH



Codon

DNA codons

© 2024 chempedia.info