Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt, traces

To determine the frequency of occurrence of mercury-containing particles in FDR, promptly collected residue from the discharge of mercury fulminate-primed ammunition was examined. Results are given in Table 22.1. In the first firing a small proportion of the particles also contained one of the following elements cobalt (trace), magnesium (trace), nickel (trace), and phosphorus (minor and trace). [Pg.205]

This means, for example, that of the 19 analyzed specimens from Snake River, 4 of the cobalt trace element concentrations were in the... [Pg.276]

When the above-mentioned data on the very small cobalt concentrations usually found in PWR primary coolant are taken into consideration, such solubilities would mean that cobalt traces in the primary coolant should be present in the ionic dissolved state. However, from the routine analyses of PWR primary coolant it is well known that the overwhelming fraction of cobalt present in the solution can be retained by filtering, together with the particulate corrosion products. This discrepancy raises the question of what mechanism is responsible for the uptake of the cobalt traces into the spinel-type oxides. According to Matijevic (1986), there are three possibilities ... [Pg.291]

A direct experimental detection of the state of cobalt traces in the particulate corrosion products is very difficult to obtain. One practical reason for this difficulty is the cobalt concentration, which is usually far too low for the usual structure analysis methods such as X-ray identification of the prevailing chemical compound moreover, the similarity of the crystallographic data of cobalt and nickel ferrites to those of Fe304 complicates the interpretation of the analytical results. However, there are two observations which raise doubts about whether the above-mentioned assumption of cobalt incorporation from the primary coolant into the... [Pg.292]

Cobalt, copper, molybdenum, iodine, iron, manganese, nickel, selenium, and zinc are sometimes provided to mminants. Mineral deficiency or toxicity in sheep, especially copper and selenium, is a common example of dietary mineral imbalance (21). Other elements may be required for optimal mminant performance (22). ExceUent reviews of trace elements are available (5,22). [Pg.156]

Metal-Catalyzed Oxidation. Trace quantities of transition metal ions catalyze the decomposition of hydroperoxides to radical species and greatiy accelerate the rate of oxidation. Most effective are those metal ions that undergo one-electron transfer reactions, eg, copper, iron, cobalt, and manganese ions (9). The metal catalyst is an active hydroperoxide decomposer in both its higher and its lower oxidation states. In the overall reaction, two molecules of hydroperoxide decompose to peroxy and alkoxy radicals (eq. 5). [Pg.223]

Arsenic is widely distributed about the earth and has a terrestrial abundance of approximately 5 g/t (4). Over 150 arsenic-bearing minerals are known (1). Table 2 fists the most common minerals. The most important commercial source of arsenic, however, is as a by-product from the treatment of copper, lead, cobalt, and gold ores. The quantity of arsenic usually associated with lead and copper ores may range from a trace to 2 —3%, whereas the gold ores found in Sweden contain 7—11% arsenic. Small quantities of elemental arsenic have been found in a number of localities. [Pg.327]

Generally, most asphalts are 79—88 wt % C, 7—13 wt % H, trace-8 wt % S, 2—8 wt % O, and trace-3 wt % N (Table 7). Trace metals such as iron, nickel, vanadium, calcium, titanium, magnesium, sodium, cobalt, copper, tin, and 2inc, occur in cmde oils. Vanadium and nickel are bound in organic complexes and, by virtue of the concentration (distillation) process by which asphalt is manufactured, are also found in asphalt. [Pg.368]

The reactive species that iaitiate free-radical oxidatioa are preseat ia trace amouats. Exteasive studies (11) of the autoxidatioa mechanism have clearly estabUshed that the most reactive materials are thiols and disulfides, heterocycHc nitrogen compounds, diolefins, furans, and certain aromatic-olefin compounds. Because free-radical formation is accelerated by metal ions of copper, cobalt, and even iron (12), the presence of metals further compHcates the control of oxidation. It is difficult to avoid some metals, particularly iron, ia fuel systems. [Pg.414]

Cr C Cr C chromium iton(l l) [12052-89-0] CrFe (c phase), and chromium iron molybdenum(12 36 10) [12053-58-6] Cr 2F 36 o Q phase), are found as constituents in many alloy steels Ct2Al23 and CoCr ate found in aluminum and cobalt-based alloys, respectively. The chromium-rich interstitial compounds, Ci2H, chromium nitrogen(2 l) [12053-27-9] Ct2N, and important role in the effect of trace impurities on the... [Pg.121]

Cobalt is the thirtieth most abundant element on earth and comprises approximately 0.0025% of the earth s cmst (3). It occurs in mineral form as arsenides, sulfides, and oxides trace amounts are also found in other minerals of nickel and iron as substitute ions (4). Cobalt minerals are commonly associated with ores of nickel, iron, silver, bismuth, copper, manganese, antimony, and 2iac. Table 1 Hsts the principal cobalt minerals and some corresponding properties. A complete listing of cobalt minerals is given ia Reference 4. [Pg.369]

The detection and determination of traces of cobalt is of concern in such diverse areas as soflds, plants, fertilizers (qv), stainless and other steels for nuclear energy equipment (see Steel), high purity fissile materials (U, Th), refractory metals (Ta, Nb, Mo, and W), and semiconductors (qv). Useful techniques are spectrophotometry, polarography, emission spectrography, flame photometry, x-ray fluorescence, activation analysis, tracers, and mass spectrography, chromatography, and ion exchange (19) (see Analytical TffiTHODS Spectroscopy, optical Trace and residue analysis). [Pg.371]

Bromo-2-pyridyla2o)-5-diethylamiQophenol (5-Br-PADAP) is a very sensitive reagent for certain metals and methods for cobalt have been developed (23). Nitroso-naphthol is an effective precipitant for cobalt(III) and is used in its gravimetric determination (24,25). Atomic absorption spectroscopy (26,27), x-ray fluorescence, polarography, and atomic emission spectroscopy are specific and sensitive methods for trace level cobalt analysis (see... [Pg.379]

Several nonoccupational health problems have been traced to cobalt compounds. Cobalt compounds were used as foam stabilizers in many breweries throughout the world in the mid to late 1960s, and over 100 cases of cardiomyopathy, several followed by death, occurred in heavy beer drinkers (38,39). Those affected consumed as much as 6 L/d of beer (qv) and chronic alcoholism and poor diet may well have contributed to this disease. Some patients treated with cobalt(II) chloride for anemia have developed goiters and polycythemia (40). The impact of cobalt on the thyroid gland and blood has been observed (41). [Pg.379]

The Perkin reaction is of importance for the iadustrial production of coumarin and a number of modifications have been studied to improve it, such as addition of a trace of iodine (46) addition of oxides or salts of metals such as iron, nickel, manganese, or cobalt (47) addition of catalytic amounts of pyridine (48) or piperidine (49) replacement of sodium acetate by potassium carbonate (50,51) or by cesium acetate (52) and use of alkaU metal biacetate... [Pg.321]

Manganese, copper, iron, cobalt and nickel ions can all initiate oxidation. Untinned copper wire can have a catastrophic effect on natural rubber compounds with which it comes into contact. Inert fillers for use in rubbers are usually tested for traces of such metal ions, particularly copper and manganese. The problem is perhaps less serious in saturated hydrocarbon polymers but still exists. [Pg.140]

In addition to the Raney nickel catalysts, Raney catalysts derived from iron, cobalt, and copper have been examined for their action on pyridine. At the boiling point of pyridine, degassed Raney iron gave only a very small yield of 2,2 -bipyridine but the activity of iron in this reaction is doubtful as the catalyst was subsequently found to contain 1.44% of nickel. Traces of 2,2 -bipyridine (detected spectroscopically) were formed from pyridine and a degassed, Raney cobalt catalyst but several Raney copper catalysts failed to produce detectable quantities of 2,2 -bipyridine following heating with pyridine. [Pg.182]

The sotrace elements, such as boron, cobalt, iron,copper, zinc, manganese, chromium, molybdenum and still others may also be used to advantage. Generally, these trace elements occur in sufficient quantities in the carbonaceous and nitrogenous constituents of the medium, particularly if derived from natural sources, or in the tap water, and the addition of further quantities of these trace elements may consequently be unnecessary. [Pg.1062]

A slight degree of acceleration can be obtained by introducing traces of metals which are more noble than iron, for example nickel, copper, cobalt, silver and mercury. These metals are deposited electrochemically over the... [Pg.709]


See other pages where Cobalt, traces is mentioned: [Pg.534]    [Pg.106]    [Pg.259]    [Pg.315]    [Pg.138]    [Pg.291]    [Pg.293]    [Pg.311]    [Pg.313]    [Pg.354]    [Pg.336]    [Pg.534]    [Pg.106]    [Pg.259]    [Pg.315]    [Pg.138]    [Pg.291]    [Pg.293]    [Pg.311]    [Pg.313]    [Pg.354]    [Pg.336]    [Pg.318]    [Pg.2]    [Pg.68]    [Pg.32]    [Pg.373]    [Pg.7]    [Pg.250]    [Pg.171]    [Pg.402]    [Pg.410]    [Pg.410]    [Pg.369]    [Pg.2212]    [Pg.480]    [Pg.99]    [Pg.459]    [Pg.1210]    [Pg.34]    [Pg.688]   


SEARCH



© 2024 chempedia.info