Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt , redox reactions

Catalyst Selection. The low resin viscosity and ambient temperature cure systems developed from peroxides have faciUtated the expansion of polyester resins on a commercial scale, using relatively simple fabrication techniques in open molds at ambient temperatures. The dominant catalyst systems used for ambient fabrication processes are based on metal (redox) promoters used in combination with hydroperoxides and peroxides commonly found in commercial MEKP and related perketones (13). Promoters such as styrene-soluble cobalt octoate undergo controlled reduction—oxidation (redox) reactions with MEKP that generate peroxy free radicals to initiate a controlled cross-linking reaction. [Pg.318]

The reductive coupling of allyl halides to 1,5-hexadiene at glassy C electrodes was catalyzed by tris(2, 2,-bipyridyl)cobalt(II) and tris(4,4 -dimethyl-2, 2/-bipyridyl)cobalt(II) in aqueous solutions of 0.1 M sodium dodecylsulfate (SDS) or 0.1 M cetyltrimethylammonium bromide (CTAB).48 An organocobalt(I) intermediate was observed by its separate voltammetric reduction peak in each system studied. This intermediate undergoes an internal redox reaction to form 1,5-hexadiene... [Pg.181]

Thiocarbamate (tc, RHNCSO-) is a monodentate ambidentate ligand, and both oxygen- and sulfur-bonded forms are known for the simple pentaamminecobalt(III) complexes. These undergo redox reactions with chromium(II) ion in water via attack at the remote O or S atom of the S- and O-bound isomers respectively, with a structural trans effect suggested to direct the facile electron transfer in the former.1045 A cobalt-promoted synthesis utilizing the residual nucleophilicity of the coordinated hydroxide in [Co(NH3)5(OH)]2+ in reaction with MeNCS in (MeO)3PO solvent leads to the O-bonded monothiocarbamate, which isomerizes by an intramolecular mechanism to the S-bound isomer in water.1046... [Pg.93]

Co2+ to Co3+, but also from a direct exchange of Co2+ for Mn2+ produced during the redox reaction. The cobalt in arid soils, as indicated by Han et al. (2002b), mainly occurs in the residual and the Mn oxide (easily reducible oxide) fractions. Furthermore, after water saturation, the Co is transferred mainly from the Mn oxide fraction into the carbonate and exchangeable fraction. This will be discussed in detail in the next chapter. [Pg.168]

Similar results were obtained for the redox reactions of a series of cobalt diimine complexes with cytochrome c (156, 157). In general a good agreement exists between the kinetically and thermodynami-... [Pg.42]

All oxidation reactions are coupled to reduction reactions. In many cases redox reactions can also involve or be affected by changes in the surrounding environment, such as changes in the pH or temperature (i.e., endothermic or exothermic reactions). Many elements in the subsurface can exist in various oxidation states, some examples include elements like carbon, nitrogen, oxygen, sulfur, iron, cobalt, vanadium, and nickel. [Pg.40]

We have used the reaction of m-chloroperbenzoic acid with Co/Mn/Br as a model system to attempt to understand the nature of this important autoxidation catalyst. Using stopped-flow and UV-VIS kinetic techniques, we have determined the step-wise order in which the catalyst components react with each other. The cobalt(II) is initially oxidized to Co(III) by the peracid, the cobalt(III) then oxidizes the manganese to Mn(III), which then oxidizes the bromide. The order of these redox reactions is the opposite to that expected from thermodynamics. Suggestions will be made of the relationship of this model to the known characteristics of autoxidation processes. [Pg.81]

Cobalt(II) hexacyanoferrate, formally similar to Prussian blue, exhibits a far more complex electrochemistry. Only recently, Lezna etal. [65] succeeded in elucidating this system by a combination of in situ infrared spectroscopy and electrochemistry, and ex situ X-ray photoelectron spectroscopy. Figure 8 shows the pathways of the three different phases involved in the electrochemistry, and their interconversion by electrochemical redox reactions and photochemical reactions. [Pg.715]

Arthur Adamson If I may, I would like to mention a reaction that I think is an example of substitution which paves the way for a redox reaction, and yet is not a case of the charge following the oxidant into the coordination sphere. This is the reaction of ferrocyanide with cobaltous EDTA. [Pg.71]

The first borinate-transition metal complex to be prepared was actually the first known derivative of borin. Bis(cyclopentadienide)cobalt (94) reacts with organic halides and was analogously found to react with boron halides in a redox reaction to give (95), followed by an insertion to yield (cyclopentadienide)(borinato)cobalt (97) (72CB3413). The product composition depends on the ratio of reactants. Compound (97) is the main product (80% yield when R = Ph, X = Br) when the molar ratio between (94) and the boron halide is 2.5 1. A second and slower insertion occurs to give (28) when (97) is treated with another equivalent of the boron halide (Scheme 13). Compounds (28), (29) and (97) have one electron more than predicted by the 187r-electron rule for transition metal complexes. They are red in colour and, of course, paramagnetic. The mixed complexes (97) are thermally labile, in contrast to (28) and (29), which can be heated to 180 °C and sublimed at 90 °C. Their ionization potentials are low and the complexes are sensitive to air. [Pg.644]

Hie redox reaction now takes place within this dincclear complex with formation of reduced Cofll) and oxidized Cr(ll)). The latter species forms an inert chloroaqua complex, but the cobalt(II) is labile, so the intermediate dissociates with the chlorine atom remaining with the chromium ... [Pg.295]

There are more complex examples of metal ion catalysis. Cobalt in vitamin B12 reactions forms covalent bonds with carbons of substrates.41,42 Metals can also act as electron conduits in redox reactions. For example, in cytochrome c the iron in the heme is reversibly oxidized and reduced. [Pg.376]


See other pages where Cobalt , redox reactions is mentioned: [Pg.113]    [Pg.246]    [Pg.158]    [Pg.221]    [Pg.140]    [Pg.588]    [Pg.116]    [Pg.438]    [Pg.86]    [Pg.246]    [Pg.279]    [Pg.404]    [Pg.405]    [Pg.56]    [Pg.148]    [Pg.144]    [Pg.59]    [Pg.72]    [Pg.262]    [Pg.314]    [Pg.95]    [Pg.328]    [Pg.339]    [Pg.680]    [Pg.1013]    [Pg.373]    [Pg.465]    [Pg.122]    [Pg.9]    [Pg.81]    [Pg.117]    [Pg.206]    [Pg.640]    [Pg.833]    [Pg.255]    [Pg.23]   
See also in sourсe #XX -- [ Pg.360 ]

See also in sourсe #XX -- [ Pg.20 , Pg.21 ]

See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Cobalt complexes outer-sphere redox reactions

Cobalt complexes redox reactions

Cobalt reactions

© 2024 chempedia.info