Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cleaning sodium hydroxide

If a compound has been recrystallised from petrol, benzene, etc.y some freshly cut shavings of clean paraffin wax should be added to the calcium chloride in (A) or to the sodium hydroxide in D, The surface of the wax absorbs organic solvent vapours (particularly the hydrocarbons) and the last trace of such solvents is thus readily removed from the recrystallised material. [Pg.20]

It must be emphasised that there is no universal cleaning mixture. The student must take into account the nature of the substance to be removed and act accordingly. Thus if the residue in the flask is known to be basic in character, dilute hydrochloric or sulphuric acid may dissolve it completely similarly, dilute sodium hydroxide... [Pg.54]

It is preferable to use Tollen s ammoniacal silver nitrate reagent, which is prepared as follows Dissolve 3 g. of silver nitrate in 30 ml. of water (solution A) and 3 g. of sodium hydroxide in 30 ml. of water (solution B). When the reagent is requir, mix equal volumes (say, 1 ml.) of solutions A and JB in a clean test-tube, and add dilute ammonia solution drop by drop until the silver oxide is just dissolved. Great care must be taken in the preparation and use of this reagent, which must not be heated. Only a small volume should be prepared just before use, any residue washed down the sink with a large quantity of water, and the test-tubes rinsed with dilute nitric acid. [Pg.330]

Mix intimately in a mortar 100 g. of sodium laevulinate, 250 g. of phosphorus sulphide (1) and 50 g. of clean dry sand. Place the mixture in a flask fitted with a condenser for distillation and a receiver (2). Heat the flask with a free flame until the reaction commences, and then remove the flame. When the reaction subsides, continue the heating until distillation ceases. Wash the distillate with 10 per cent, sodium hydroxide solution to remove acidic by-products and steam distil. Separate the crude 2-methyltliiophene from the steam distillate, dry over anhydrous calcium sulphate, and distil from a little sodium. Collect the pure compound at 113° the yield is 30 g. [Pg.836]

In a 500 ml. three-necked flask, equipped with a thermometer, mechanical stirrer and efficient reflux condenser, dissolve 16 g. of sodium hydroxide pellets in 95 ml. of hot methyl alcohol. Add 49 g. of guanidine nitrate, stir the mixture at 50-65° for 15 minutes, and then cool to about 20°. Filter oflF the separated sodium nitrate and wash with two 12 ml. portions of methyl alcohol. Return the combined filtrates to the clean reaction flask, add 69 g. of sulphanilamide (Section IX,9) and stir at 50-55° for 15 minutes. Detach the reflux condenser and, with the aid of a still-head ( knee-tube ), arrange the apparatus for distillation from an oil bath with stirring about 100 ml. of methyl alcohol are recovered. Add 12 g. of pure cycZohexanol. Raise the temperature of the oil bath to 180-190° and continue the distillation. Reaction commences with the evolution of ammonia when the uiternal temperature reaches 145°. Maintain the... [Pg.1009]

The following description is taken from U.S. Patent 2,712,012 2.3 parts of clean sodium metal is dissolved in 50 parts of anhydrous methyl alcohol. 11.4 parts of 3-sulfanilamido-6-chloropyridazine is added and the mixture heated in a sealed tube 13 hours at 130° to 140°C. After the tube has cooled it is opened and the reaction mixture filtered, acidified with dilute acetic acid, then evaporated to dryness on the steam bath. The residue is dissolved in 80 parts of 5% sodium hydroxide, chilled and acidified with dilute acetic acid. The crude product is filtered and then recrystallized from water to give 3-sulfanilamido-6-methoxypyridazine of melting point 182° to 183°C. [Pg.1417]

Sodium hydroxide (NaOH) and potassium hydroxide (KOH) solutions do not dissolve tantalum, but tend to destroy the metal by formation of successive layers of surface scale. The rate of the destruction increases with concentration and temperature. Damage to tantalum equipment has been experienced unexpectedly when strong alkaline solutions are used during cleaning and maintenance. [Pg.896]

Sulphonphthaleins. These indicators are usually supplied in the acid form. They are rendered water-soluble by adding sufficient sodium hydroxide to neutralise the sulphonic acid group. One gram of the indicator is triturated in a clean glass mortar with the appropriate quantity of 0.1 M sodium hydroxide solution, and then diluted with water to 1 L. The following volumes of 0.1 M sodium hydroxide are required for 1 g of the indicators bromophenol blue, 15.0 mL bromocresol green, 14.4 mL bromocresol purple, 18.6 mL chlorophenol red, 23.6 mL bromothymol blue, 16.0 mL phenol red, 28.4 mL thymol blue, 21.5 mL cresol red, 26.2 mL metacresol purple, 26.2 mL. [Pg.267]

Dissolve a known weight (ca 0.5 g) of the steel by any suitable procedure. Treat the acidic sample solution (< 200 /jg Co), containing iron in the iron(II) state, with 10-15 mL of 40 per cent (w/v) sodium citrate solution, dilute to 50-75 mL and adjust the pH to 3-4 (indicator paper) with 2M hydrochloric acid or sodium hydroxide. Cool to room temperature, add 10 mL of 3 per cent (10-volume) hydrogen peroxide and, after 3 minutes, 2mL of the reagent solution. Allow to stand for at least 30 minutes at room temperature. Extract the solution in a separatory funnel by shaking vigorously for 1 minute with 25 mL of chloroform repeat the extraction twice with 10 mL portions of chloroform. Dilute the combined extracts to 50 mL with chloroform and transfer to a clean separatory funnel. Add 20 mL of 2M hydrochloric acid, shake for 1 minute, run the chloroform layer into another separatory funnel, and shake for 1 minute with 20 mL of 2M sodium hydroxide. Determine the absorbance of the clear chloroform phase in a 1 cm cell at 530 nm. [Pg.689]

It is important that the tube surfaces be kept clean to avoid the initiation of corrosion. Regular waterside inspections and, if necessary, chemical cleaning of high-pressure equipment is recommended. The level of chloride that may be tolerated in such boilers during steady operation depends on the type of treatment employed. Where all-volatile alkaline treatments (AVT) are used, then the chloride levels should be lower than where nonvolatile alkalis (NVAT), such as sodium hydroxide and sodium phosphate, are used. The value may vary, depending on whether the boiler is coal-fired or oil-fired. [Pg.589]

Spills of endosulfan, according to FAOAVHO (1975a), should be cleaned up by first washing with 5% sodium hydroxide solution and then rinsing with large quantities of water. In addition, empty containers that held endosulfan residues should be rinsed two or three times with water while the sides are scrubbed, and once with 5% sodium hydroxide solution. Thus decontaminated, the empty containers can be recycled and used by pesticide manufacturers to package a chemical similar to endosulfan if the containers remain in good condition and if such reuse is not prohibited by federal, state, or local laws. [Pg.219]

Pretreatment of hair samples also includes an extraction, usually with an alkaline sodium hydroxide solution, followed by cleaning up with LLE with n-hexane/ethyl acetate. Instead of LLE, the employment of SPE is also possible. Furthermore, the solid phase microextraction (SPME) in combination with head-space analysis is usable [104-106]. In the case of using hair samples, possible external contamination (e.g., by passive smoking of Cannabis) has to be considered as false positive result. False positive results can be avoided by washing of the hair samples previous to extraction [107]. Storage of collected samples is another important fact that can cause false results in their content of A9-THC and metabolites [108-110]. [Pg.30]


See other pages where Cleaning sodium hydroxide is mentioned: [Pg.102]    [Pg.441]    [Pg.102]    [Pg.441]    [Pg.91]    [Pg.134]    [Pg.198]    [Pg.359]    [Pg.411]    [Pg.517]    [Pg.757]    [Pg.846]    [Pg.863]    [Pg.1023]    [Pg.33]    [Pg.334]    [Pg.259]    [Pg.163]    [Pg.169]    [Pg.257]    [Pg.258]    [Pg.528]    [Pg.148]    [Pg.3]    [Pg.532]    [Pg.295]    [Pg.221]    [Pg.238]    [Pg.26]    [Pg.917]    [Pg.298]    [Pg.337]    [Pg.848]    [Pg.328]    [Pg.193]    [Pg.489]    [Pg.637]    [Pg.641]    [Pg.193]    [Pg.271]    [Pg.174]   
See also in sourсe #XX -- [ Pg.262 ]




SEARCH



Cleaning products, chemicals sodium hydroxide

Hydroxides Sodium hydroxide

Sodium hydroxide

Sodium hydroxide chemical membrane cleaning

Sodium hydroxide cleaning solution

© 2024 chempedia.info