Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cleaning procedures membrane flush

An active flux maintenance procedure was initiated at this point (about 330 h TOS), beginning with a 2 s back-flush of clean permeate through the filter membrane. This active flux maintenance cycle was continued every 30 min for just over 24 h. The flux initially recovered to 0.90 lpm/m2 (32.0 GPD/ft2), but declined again within 24 h to a baseline value of 0.76 lpm/m2 (26.7 GPD/ft2) without clean permeate back-flush. The flux maintenance method was then returned to passive (no back-flush with clean permeate) mode, only increasing the flux off-time to 60 s every 30 min. Thereafter, the flux steadily declined over the next 120 h TOS from 0.77 to 0.58 lpm/m2 (27.3 to 20.4 GPD/ft2). At 480 h TOS, a 1 h flux off-cycle was attempted, resulting in an increase of the flux back to 0.82 lpm/m2 (29.1 GPD/ ft2), a 42.6% increase. When the flux off-cycle was returned to the 60 s off-cycle for the next 48 h, it was found that the permeate flux decreased to 0.62 lpm/m2 (21.9 GPD/ft2). Applying another 1 h flux off-cycle returned the flux to 0.721pm/... [Pg.289]

The RO membranes should be cleaned using the procedures outlined in Chapter 13.2.2. Flush the membranes with permeate or better quality water. [Pg.278]

Figure 3 Methods for supported bilayer formation and membrane protein reconstitution, (a) and (b) LB/LS method. A lipid monolayer is spread at the air-water interface of a Langmuir trough and transferred to a solid substrate while keeping the surface pressure constant. A second monolayer is transferred by horizontal apposition of the first transferred monolayer and collection of a counter-piece with spacers, (c) Direct VF method. Membrane vesicles are flown into a chamber with a clean surface substrate on top. After about an hour of incubation, they form a supported bilayer on the substrate and excess vesicles are flushed out. (d) LB/VF method. The procedures depicted in panels (a) and (c) are combined leading to an asymmetric bilayer with an asymmetric protein distribution. Although this method can also be performed without a polymer, it is shown here with the polymer transferred during the LB step. Figure 3 Methods for supported bilayer formation and membrane protein reconstitution, (a) and (b) LB/LS method. A lipid monolayer is spread at the air-water interface of a Langmuir trough and transferred to a solid substrate while keeping the surface pressure constant. A second monolayer is transferred by horizontal apposition of the first transferred monolayer and collection of a counter-piece with spacers, (c) Direct VF method. Membrane vesicles are flown into a chamber with a clean surface substrate on top. After about an hour of incubation, they form a supported bilayer on the substrate and excess vesicles are flushed out. (d) LB/VF method. The procedures depicted in panels (a) and (c) are combined leading to an asymmetric bilayer with an asymmetric protein distribution. Although this method can also be performed without a polymer, it is shown here with the polymer transferred during the LB step.
After having prepared your equipment in the described way, you can attach the source of prepared mobile phase. Now you should leave the equipment for a little time to equilibrate. This way, manufacturing-induced impurities are flushed out of the column as well as other dirt. During this time, you can prepare your sample. If you are in luck, you will only have to dissolve it in the mobile phase. If not, follow the method described in the operating procedure. All particles should be removed, most simply by membrane filtration. Never forget to test to ensure that your dissolved sample does not precipitate in the mobile phase. Should this happen in your equipment, you will be busy for some time with cleaning or even replacing expensive parts. [Pg.8]


See other pages where Cleaning procedures membrane flush is mentioned: [Pg.377]    [Pg.464]    [Pg.220]    [Pg.221]    [Pg.61]    [Pg.658]    [Pg.1426]    [Pg.256]    [Pg.527]    [Pg.1354]    [Pg.225]    [Pg.76]    [Pg.270]    [Pg.280]    [Pg.162]    [Pg.568]    [Pg.805]    [Pg.475]    [Pg.236]    [Pg.733]   
See also in sourсe #XX -- [ Pg.319 ]




SEARCH



Cleaning procedure

Flush

Flushing

Membrane cleaning

© 2024 chempedia.info