Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Citric acid cycle citrate synthase

Enzymes work by bringing reactant molecules together, holding them, in the orientation necessary for reaction, and providing any necessary acidic or basic sites to catalyze specific steps. As an example, let s look at citrate synthase, an enzyme that catalyzes the aldol-like addition of acetyl CoA to oxaloacetate to give citrate. The reaction is the first step in the citric acid cycle, in which acetyl groups produced by degradation of food molecules are metabolized to yield C02 and H20. We ll look at the details of the citric acid cycle in Section 29.7. [Pg.1043]

Step 1 of Figure 29.12 Addition to Oxaloacetate Acetyl CoA enters the citric acid cycle in step 1 by nucleophilic addition to the oxaloacetate carbonyl group, to give (S)-citryl CoA. The addition is an aldol reaction and is catalyzed by citrate synthase, as discussed in Section 26.11. (S)-Citryl CoA is then hydrolyzed to citrate by a typical nucleophilic acyl substitution reaction, catalyzed by the same citrate synthase enzyme. [Pg.1156]

Citrate is isomerized to isocitrate by the enzyme aconitase (aconitate hydratase) the reaction occurs in two steps dehydration to r-aconitate, some of which remains bound to the enzyme and rehydration to isocitrate. Although citrate is a symmetric molecule, aconitase reacts with citrate asymmetrically, so that the two carbon atoms that are lost in subsequent reactions of the cycle are not those that were added from acetyl-CoA. This asymmetric behavior is due to channeling— transfer of the product of citrate synthase directly onto the active site of aconitase without entering free solution. This provides integration of citric acid cycle activity and the provision of citrate in the cytosol as a source of acetyl-CoA for fatty acid synthesis. The poison fluo-roacetate is toxic because fluoroacetyl-CoA condenses with oxaloacetate to form fluorocitrate, which inhibits aconitase, causing citrate to accumulate. [Pg.130]

A similar aldol reaction is encountered in the Krebs cycle in the reaction of acetyl-CoA and oxaloacetic acid (see Section 15.3). This yields citric acid, and is catalysed by the enzyme citrate synthase. This intermediate provides the alternative terminology for the Krebs cycle, namely the citric acid cycle. The aldol reaction is easily rationalized, with acetyl-CoA providing an enolate anion nucleophile that adds to the carbonyl of oxaloacetic acid. We shall see later that esters and thioesters can also be converted into enolate anions (see Section 10.7). [Pg.363]

The Krebs cycle intermediate that reacts with acetyl-CoA is oxaloacetate, and this reacts via an aldol reaction, giving citryl-CoA. However, the enzyme citrate synthase also carries out hydrolysis of the thioester linkage, so that the product is citrate hence the terminology citric acid cycle . The hydrolysis of the thioester is actually responsible for disturbing the eqnilibrinm and driving the reaction to completion. [Pg.585]

Potent metabolic inhibitors of the citric acid cycle. Fluo-roacetate (F-CH2COO ) must first be converted to flu-oroacetyl-S-CoA (by acetyl-CoA synthetase) and thence to fluorocitrate (by citrate synthase) before it can act as a potent metabohc inhibitor of the aconitase reaction as well as citrate transport. Submicromolar concentrations of ( )-erythro-Q iOTOcitTate can irreversibly inhibit citrate uptake by isolated brain mitochondria. [Pg.291]

The toxicity of fluoroacetic acid and of its derivatives has played an historical decisive role at the conceptual level. Indeed, it demonstrates that a fluorinated analogue of a natural substrate could have an activity profile that is far different from that of the nonfluorinated parent compound. The toxicity of fluoroacetic acid is due to its ability to block the citric acid cycle (Krebs cycle), which is an essential process of the respiratory chain. The fluoroacetate is transformed in vivo into 2-fluorocitrate by the citrate synthase. It is generally admitted that aconitase (the enzyme that performs the following step of the Krebs cycle) is inhibited by 2-fluorocitrate the formation of aconitate through elimination of the water molecule is a priori impossible from this substrate analogue (Figure 7.1). [Pg.224]

Pyruvate carboxylase is a regulatory enzyme and is virtually inactive in the absence of acetyl-CoA, its positive allosteric modulator. Whenever acetyl-CoA, the fuel for the citric acid cycle, is present in excess, it stimulates the pyruvate carboxylase reaction to produce more oxaloacetate, enabling the cycle to use more acetyl-CoA in the citrate synthase reaction. [Pg.617]

Acetyl-CoA enters the citric acid cycle (in the mitochondria of eukaryotes, the cytosol of prokaryotes) as citrate synthase catalyzes its condensation with oxaloacetate to form citrate. [Pg.620]

The overall rate of the citric acid cycle is controlled by the rate of conversion of pyruvate to acetyl-CoA and by the flux through citrate synthase, isocitrate dehydrogenase, and a-lcetoglutarate dehydrogenase. These fluxes are largely determined by the concentrations of substrates and products the end products ATP and NADH are inhibitory, and the substrates NAD+ and ADP are stimulatory. [Pg.623]

Balance Sheet for the Citric Acid Cycle The citric acid cycle has eight enzymes citrate synthase, aconitase, isocitrate dehydrogenase, a-ketoglutarate dehydrogenase, succinyl-CoA synthetase, succinate dehydrogenase, fumarase, and malate dehydrogenase. [Pg.627]

On the basis of these observations, suggest how succinyl-CoA regulates the activity of citrate synthase. (Hint See Fig. 6-29.) Why is succinyl-CoA an appropriate signal for regulation of the citric acid cycle How does the regulation of citrate synthase control the rate of cellular respiration in pig heart tissue ... [Pg.630]

One of the simplest biochemical addition reactions is the hydration of carbon dioxide to form carbonic acid, which is released from the zinc-containing carbonic anhydrase (left, Fig. 13-1) as HC03-. Aconitase (center, Fig. 13-4) is shown here removing a water molecule from isocitrate, an intermediate compound in the citric acid cycle. The H20 that is removed will become bonded to an iron atom of the Fe4S4 cluster at the active site as indicated by the black H20. An enolate anion derived from acetyl-CoA adds to the carbonyl group of oxaloacetate to form citrate in the active site of citrate synthase (right, Fig. 13-9) to initiate the citric acid cycle. [Pg.676]

Polycarboxylic acid synthases. Several enzymes, including citrate synthase, the key enzyme which catalyzes the first step of the citric acid cycle, promote condensations of acetyl-CoA with ketones (Eq. 13-38). An a-oxo acid is most often the second substrate, and a thioester intermediate (Eq. 13-38) undergoes hydrolysis to release coenzyme A.199 Because the substrate acetyl-CoA is a thioester, the reaction is often described as a Claisen condensation. The same enzyme that catalyzes the condensation of acetyl-CoA with a ketone also catalyzes the second step, the hydrolysis of the CoA thioester. These polycarboxylic acid synthases are important in biosynthesis. They carry out the initial steps in a general chain elongation process (Fig. 17-18). While one function of the thioester group in acetyl-CoA is to activate the methyl hydrogens toward the aldol condensation, the subsequent hydrolysis of the thioester linkage provides for overall irreversibility and "drives" the synthetic reaction. [Pg.700]

Reductive citric acid cycle 5 3 NAD(P)H, 1 unknown donor", 2 ferredoxin 2-Oxoglutarate synthase Isocitrate dehydrogenase6 Pyruvate synthase PEP carboxylase C02 C02 C02 HCOJ Acetyl-CoA, pyruvate, PEP, oxaloacetate, succinyl-CoA, 2-oxoglutarate 2-Oxoglutarate synthase, ATP-citrate lyase... [Pg.36]

Three modifications of the conventional oxidative citric acid cycle are needed, which substitute irreversible enzyme steps. Succinate dehydrogenase is replaced by fumarate reductase, 2-oxoglutarate dehydrogenase by ferredoxin-dependent 2-oxoglutarate oxidoreductase (2-oxoglutarate synthase), and citrate synthase by ATP-citrate lyase [3, 16] it should be noted that the carboxylases of the cycle catalyze the reductive carboxylation reactions. There are variants of the ATP-driven cleavage of citrate as well as of isocitrate formation [7]. The reductive citric acid... [Pg.37]

Figure 3.2 Reductive citric acid cycle, ffi, ATP-citrate lyase 2-oxoglutarate ferredoxin oxidoreductase (2-oxoglutarate synthase) Figure 3.2 Reductive citric acid cycle, ffi, ATP-citrate lyase 2-oxoglutarate ferredoxin oxidoreductase (2-oxoglutarate synthase) <D, isocitrate dehydrogenase , pyruvate ferredoxin oxidoreductase (pyruvate synthase). Fdred = reduced ferredoxin.
Fig. 1.2 Intermediates of the citric acid cycle showing the relationship between glutamate and aspartate. Pyruvate dehydrogenase complex (1) citrate synthase (2) aconitase (3) isocitrate dehydrogenase (4) a-ketoglutarate dehydrogenase (5) succinyl-CoA synthetase (6) fumarate (7) fumarase dehydratase (8) malate dehydrogenase (9) and aspartate aminotransferase (10)... Fig. 1.2 Intermediates of the citric acid cycle showing the relationship between glutamate and aspartate. Pyruvate dehydrogenase complex (1) citrate synthase (2) aconitase (3) isocitrate dehydrogenase (4) a-ketoglutarate dehydrogenase (5) succinyl-CoA synthetase (6) fumarate (7) fumarase dehydratase (8) malate dehydrogenase (9) and aspartate aminotransferase (10)...
Answer Oxygen consumption is a measure of the activity of the first two stages of cellular respiration glycolysis and the citric acid cycle. Initial nutrients being oxidized are carbohydrates and lipids. Because several intermediates of the citric acid cycle can be siphoned off into biosynthetic pathways, the cycle may slow down for lack of oxaloacetate in the citrate synthase reaction, and acetyl-CoA will accumulate. Addition of oxaloacetate or malate (converted to oxaloacetate by malate dehydrogenase) will stimulate the cycle and allow it to use the accumulated acetyl-CoA. This stimulates respiration. Oxaloacetate is regenerated in the cycle, so addition of oxaloacetate (or malate) stimulates the oxidation of a much larger amount of acetyl-CoA. [Pg.174]

Answer Oxaloacetate depletion would tend to inhibit the citric acid cycle. Oxaloacetate is present at relatively low concentrations in mitochondria, and removing it for gluconeogenesis would tend to shift the equilibrium for the citrate synthase reaction toward oxaloacetate. However, anaplerotic reactions (see Fig. 16-15) counter this effect by replacing oxaloacetate. [Pg.178]

Answer Anaplerotic reactions replenish intermediates in the citric acid cycle. Net synthesis of a-ketoglutarate from pyruvate occurs by the sequential actions of (1) pyruvate carboxylase (which makes extra molecules of oxaloacetate), (2) pyruvate dehydrogenase, and the citric acid cycle enzymes (3) citrate synthase, (4) aconitase, and (5) isocitrate dehydrogenase ... [Pg.179]

There are four major regulatory enzymes in the citric acid cycle. These are citrate synthase (step 1), isocitrate dehydrogenase (step 3), 2-oxoglutarate dehydrogenase (step 4), and succinate dehydrogenase (step 6). [Pg.350]

Fluoroacetyl-CoA competes with acetyl-CoA as a substrate for citrate synthase and is converted into 4-fluorocitrate. It is 4-fluorocitrate that blocks the citric acid cycle by being a potent inhibitor of aconitase (Fig. 12-13) and in this lies its toxicity. [Pg.359]

Genetic deficiency of pyruvate carboxylase does not cause the expected hypoglycemia. Rather, it seems that depletion of tissue pools of oxaloacetate results in impaired activity of citrate synthase, and a slowing of citric acid cycle activity, leading to accumulation of lactate, pyruvate, and alanine, and also increased accumulation of acetyl CoA, resulting in ketosis. Affected infants have serious neurological problems and rarely survive. A less severe variant of the disease is associated with low residual activity of pyruvate carboxylase. [Pg.331]


See other pages where Citric acid cycle citrate synthase is mentioned: [Pg.464]    [Pg.464]    [Pg.167]    [Pg.1305]    [Pg.135]    [Pg.365]    [Pg.371]    [Pg.373]    [Pg.189]    [Pg.114]    [Pg.621]    [Pg.621]    [Pg.622]    [Pg.623]    [Pg.624]    [Pg.795]    [Pg.952]    [Pg.953]    [Pg.343]    [Pg.304]    [Pg.38]    [Pg.180]    [Pg.207]    [Pg.55]   
See also in sourсe #XX -- [ Pg.482 , Pg.483 , Pg.484 ]

See also in sourсe #XX -- [ Pg.242 ]




SEARCH



Citrate cycle

Citrate synthase

Citric acid cycle citrate

Citric acid cycle citrate synthase, control

Citric cycle

© 2024 chempedia.info