Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pumps, circulation

Figure Bl.27.4. Rotating bomb isoperibole calorimeter. A, stainless steel bomb, platinum lined B, heater C, thermostat can D, thennostat iimer wall E, themiostat water G, sleeve for temperature sensor H, motor for bomb rotation J, motor for calorimeter stirrer K, coimection to cooling or heating unit for thennostat L, circulation pump. Figure Bl.27.4. Rotating bomb isoperibole calorimeter. A, stainless steel bomb, platinum lined B, heater C, thermostat can D, thennostat iimer wall E, themiostat water G, sleeve for temperature sensor H, motor for bomb rotation J, motor for calorimeter stirrer K, coimection to cooling or heating unit for thennostat L, circulation pump.
Figure Bl.27.8. Schematic view of Picker s flow microcalorimeter. A, reference liquid B, liquid under study P, constant flow circulating pump and 2, Zener diodes acting as heaters T and T2, thennistors acting as temperature sensing devices F, feedback control N, null detector R, recorder Q, themiostat. In the above A is the reference liquid and C2is the reference cell. When B circulates in cell C this cell is the working cell. (Reproduced by pemiission from Picker P, Leduc P-A, Philip P R and Desnoyers J E 1971 J. Chem. Thermo. B41.)... Figure Bl.27.8. Schematic view of Picker s flow microcalorimeter. A, reference liquid B, liquid under study P, constant flow circulating pump and 2, Zener diodes acting as heaters T and T2, thennistors acting as temperature sensing devices F, feedback control N, null detector R, recorder Q, themiostat. In the above A is the reference liquid and C2is the reference cell. When B circulates in cell C this cell is the working cell. (Reproduced by pemiission from Picker P, Leduc P-A, Philip P R and Desnoyers J E 1971 J. Chem. Thermo. B41.)...
For circulating water through a refractometer any commercial water circulating pump may be used.J... [Pg.1031]

Fig. 4. Diagram of a hoUow-fiber ultrafilter filtration system where A corresponds to the retentate reservoir B, circulation pump C, pressure gauge at module inlet D, ultrafilter module E, permeate reservoir F, pressure gauge at module outlet G, value to control module outlet pressure and H, drain... Fig. 4. Diagram of a hoUow-fiber ultrafilter filtration system where A corresponds to the retentate reservoir B, circulation pump C, pressure gauge at module inlet D, ultrafilter module E, permeate reservoir F, pressure gauge at module outlet G, value to control module outlet pressure and H, drain...
The commercial appHcation of this concept (68) is portrayed ia Figure 8, which shows the adsorbent as a stationary bed. A Hquid circulating pump is provided to pump Hquid from the bottom outiet to the top inlet of the adsorbent chamber. A fluid-directing device known as a rotary valve (69,70) is provided. The rotary valve functions on the same principle as a multiport stopcock in directing each of several streams to different lines. At the right-hand face of the valve, the four streams to and from the process are continuously fed and withdrawn. At the left-hand face of the valve, a number of lines are coimected that terminate in distributors within the adsorbent bed. [Pg.296]

Both of these pressure difference terms are not a lost energy because the energy is recovered in other parts of the fluid flow circuit if the circuit is a closed one. In an open flow circuit, the circulating pump or fan must work against these pressure differences or drops. [Pg.490]

Nuclear Radiation Effects. Components of a nuclear reactor system that require lubrication include control-rod drives, coolant circulating pumps or compressors, motor-operated valves, and fuel handling devices, and, of course, are exposed to varying amounts of ionising (14). [Pg.253]

Certain boilers employ forced circulation, whereby a pump helps impart the circulation through the downcomer lines to the waterwaH header, particularly to improve or control circulation at low loads. Forced-circulation pumps are also required in high pressure and supercritical pressure boilers, because once the pressure within a boiler approaches the critical pressure, 22.1 MPa (3208 psia), the densities of the water and steam become similar, limiting or eliminating the potential for natural circulation. [Pg.7]

In extremely cold environments, engines can quickly become difficult, sometimes nearly impossible, to start. If ordinary gasoline- or diesel-oil-fired heaters are used, the coolant circulation pump, air fan, etc, must be powered from the vehicle s batteries, thus curtailing the time the system can be used, especially at very low temperatures when it is needed the most. By adding PbTe thermoelectrics to such heater systems, about 2% of their thermal output can be turned into electricity to mn the heater s electronics, fuel pump, combustion fan, and coolant circulation pump, with stiH sufficient power left over to keep the vehicle s battery fliUy charged. The market for such units is in the hundreds of thousands if manufacturing costs can be reduced. [Pg.509]

Vapor-Liquid Separation This design problem may be important for a number of reasons. The most important is usually prevention of entrainment because of value or product lost, pollution, contamination of the condensed vapor, or fouling or corrosion of the surfaces on which the vapor is condensed. Vapor-liquid separation in the vapor head may also oe important when spray forms deposits on the w ls, when vortices increase head requirements of circulating pumps, and when shoiT circuiting allows vapor or unflashed liquid to be carried back to the circulating pump ana heating element. [Pg.1137]

In a submerged-tube FC evaporator, all heat is imparted as sensible heat, resulting in a temperature rise of the circulating hquor that reduces the overall temperature difference available for heat transfer. Temperature rise, tube proportions, tube velocity, and head requirements on the circulating pump all influence the selec tion of circulation rate. Head requirements are frequently difficult to estimate since they consist not only of the usual friction, entrance and contraction, and elevation losses when the return to the flash chamber is above the liquid level but also of increased friction losses due to flashing in the return line and vortex losses in the flash chamber. Circulation is sometimes limited by vapor in the pump suction hne. This may be drawn in as a result of inadequate vapor-liquid separation or may come from vortices near the pump suction connection to the body or may be formed in the line itself by short circuiting from heater outlet to pump inlet of liquor that has not flashed completely to equilibrium at the pressure in the vapor head. [Pg.1139]

Equation (18-31) contains no information about the ciystalhzer s influence on the nucleation rate. If the ciystaUizer is of a mixed-suspension, mixed-product-removal (MSMPR) type, satisfying the criteria for Eq. (18-31), and if the model of Clontz and McCabe is vahd, the contribution to the nucleation rate by the circulating pump can be calculated [Bennett, Fiedelman, and Randolph, Chem. E/ig, Prog., 69(7), 86(1973)] ... [Pg.1659]

Equation (18-36) is the general expression for impeller-induced nucleation. In a fixed-geometry system in which only the speed of the circulating pump is changed and in which the flow is roughly proportional to the pump speed, Eq. (18-36) may be satisfactorily replaced with... [Pg.1659]

When circulating the blending system and running down into the tank at the same time, it may be possible to direct the rundown stream into the circulating pump suction for additional blending in the pump. [Pg.210]

A low-pressure-drop liquid cyclone is sometimes used to clarify liquor discharged from the evaporator. The driving force is the pressure drop across the circulating pump. Thickened slurry is returned through a wide-open cyclone underflow connection to the circulating piping before the pump suction. [Pg.97]

A loop reactor is a continuous steel tube or pipe which connects the outlet of a circulation pump to its inlet (Figure 3.1). Reactants are fed... [Pg.30]

Failure of the integrity of the DjO system in sequence 5 resulted from a small leak in the DjO system and failure of the operating personnel to isolate the leak which dominated the sequence. The probability of the small leak that challenges of the tank used to pressurize seals for the main circulating pumps was estimated to be 0.5 0.21 g. [Pg.419]


See other pages where Pumps, circulation is mentioned: [Pg.296]    [Pg.297]    [Pg.362]    [Pg.457]    [Pg.21]    [Pg.23]    [Pg.343]    [Pg.473]    [Pg.476]    [Pg.477]    [Pg.1139]    [Pg.1144]    [Pg.1556]    [Pg.1664]    [Pg.1665]    [Pg.2525]    [Pg.51]    [Pg.51]    [Pg.210]    [Pg.304]    [Pg.80]    [Pg.457]    [Pg.458]    [Pg.24]    [Pg.96]    [Pg.97]    [Pg.98]    [Pg.101]    [Pg.236]    [Pg.254]    [Pg.168]    [Pg.224]    [Pg.225]    [Pg.417]   
See also in sourсe #XX -- [ Pg.140 , Pg.157 ]

See also in sourсe #XX -- [ Pg.475 ]

See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Pumps, circulating

© 2024 chempedia.info