Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cinchona nucleophilic catalysts

Dicarbonyl donors are excellent Michael donors in asymmetric conjugate addition to a,p-nnsatnrated ketones. Wang and co-workers [79] applied chiral Cinchona-thiourea catalyst 131 to various carbon donors in the addition to aromatic enones. A diverse array of nucleophiles, mainly 1,3-dicarbonyls proceeded smoothly in the conjugate addition to a,p-unsaturated enone 132 (Scheme 29). [Pg.167]

No examples of simple organocatalytic kinetic resolution of dicarboxylic acid anhydrides, e.g. by alcoholysis (Scheme 13.1, middle, X = CR2) seem to have been reported. This type of transformation requires that one anhydride enantiomer remains unchanged while the other is transformed to a mono-ester. Nucleophilic catalysts such as cinchona alkaloids have been shown to effect parallel kinetic resolution, that is, the two enantiomers of the anhydride are converted to regioiso-meric esters. This type of transformation is therefore discussed in Section 13.1.3. [Pg.352]

Catalyst 3 is proposed to function in a manner similar to the cinchona alkaloid catalysts (1 and 2), with the tertiary amine providing activation for the nucleophilic thiol, which is held in close proximity to the thiourea-bound carbonyl substrate. [Pg.195]

Later, Lawrence and coworker obtained somewhat better results by employing silanes as hydride donors and cinchona-based ammonium fluorides as nucleophilic catalysts (Scheme 5.29) [36], Among the N-alkylated quinine and quinidine fluorides screened in their study, the N-benzylquinidinium fluoride 40 was identified as the... [Pg.126]

In 2007, Jorgensen and coworkers demonstrated that the bifunctional thiourea-cinchona alkaloid catalysts 81b also promoted the enantioselective addition of oximes 153 as oxygen nucleophiles to nitroolefins 124 giving the adduct 154 in good yield with a high level of enantioselectivity (Scheme 9.52) [45]. The obtained adduct 154 can be converted to the optically active aliphatic nitro- or aminoalcohols. It is believed that the... [Pg.280]

Recently an expansion of the electrophile scope of the conjugate addition of sulfur nucleophiles has been reported by different groups. As depicted in Fig. 2.29 for selected examples, Cinchona-denwed catalysts 203 and 205 promote highly enantioselective additions to nitrooleflns [387] and a,p-unsaturated V-acylated oxazolidin-2-ones [388] through non-covalent catalysis. Especially interesting results the Michael reaction to P-substituted nitroacrylates catalyzed by chiral thio-... [Pg.171]

Few examples have been reported for the organocatalytic asymmetric conjugate addition of sulfur nucleophiles other than thiols. The reaction of thiocarboxylic acids to cyclohex-2-enones [390] and a,p-nnsatnrated esters [391] was initially studied by Wynberg et al. employing Cinchona alkaloid catalysts with limited success in terms of selectivity (up to 54% ee). Slightly better enantioselectivities have been recently obtained by Wang et al. in the 1,4-addition of thioacetic acid to P-nitrostyrenes (up to 78% ee) [392] and trani-chalcones (up to 65% ee) [393], using Takemoto s thiourea 142 as catalyst (2-10 mol%). [Pg.172]

Subsequently, Romo et al. studied an intramolecular nucleophile (O-acetyl quinidine, O-Ac-QD) catalysed aldol-lactonisation (NCAL) process of achiral acid-aldehydes (R = R ) promoted by a modified Mukaiyama reagent (Scheme 15.10) and EtsN, providing p-oxoketenes in situ, leading to a variety of novel p-lactone-fused bicyclic systems. This process was then extended to keto-acid substrates and more recently to racemic substrates (R t R ) demonstrating the utility of the Cinchona alkaloid catalysts O-TMS quinidine (O-TMS-QD) and O-TMS quinine (O-TMS-Q), in doubly diastereoseleetive NCAL reactions. ... [Pg.50]

Based on Pracejus s previous work with cinchona alkaloids, Bergson and Langstrom developed the Michael addition of p-ketoesters to acrolein catalyzed by 2-(hydroxymethyl)quinuclidine.Soon after, Wynberg developed severalorganocatalytic reactions using cinchona alkaloids as chiral Lewis base/nucleophilic catalysts [14]. [Pg.3]

The potential of Cinchona alkaloids as nucleophilic catalysts was also demonstrated in Gaunl s cyclopropanation approach by reacting a-halo carbonyl compounds with Michael acceptors in the presence of catalytic amounts of 0-protected Cinchona alkaloids (468—470). This reaction is thought to proceed... [Pg.117]

Chiral base catalysis is one of the most versatile and broadly applicable types of catalysis. In particular, the potential of tertiary amines to act both as a base and as a nucleophilic catalyst makes chiral tertiary amines like Cinchona alkaloids a privileged catalyst structure in modem synthesis chemistry. In addition, the field of achiral phosphine and carbene catalysis has proven its potential in numerous applications in the past and it is probably only a matter of time until chiral phosphines and carbenes will also be used routinely for other presently demanding natural product total synthesis (Table 7). [Pg.212]

The development of the first highly enantioselective cyanocarbonation of prochiral ketones promoted by a chiral base catalyst, such as a cinchona alkaloid derivative, was reported by Tian and Deng in 2006. " Importantly, the reaction complemented known enzyme- and transition metal based methods in substrate scope via its unique ability to promote highly enantioselective cyanocarbonation of sterically hindered simple dialkyl ketones. Mechanistic studies provided experimental evidence to shed significant light on the asymmetric induction step in which the modified cinchona alkaloid acted as a chiral nucleophilic catalyst. Moreover, experimental evidence supported the mechanistic proposal that the enantioselectivity determination step in the cyanocarbonation was a DKR of the putative intermediates G and H via asymmetric transfer of the alkoxycarbonyl group (Scheme 2.105). [Pg.122]

In a manner largely complementary to secondary amine-catalyzed asymmetric conjugate addition to enals with heteroatom nucleophiles, chiral primary amines were recently found to be the catalysts of choice for similar Michael addition to a,p-unsaturated ketones. With their previously developed cinchona-type catalyst 91, Melchiorre and coworkers achieved the asymmetric sulfa-Michael addition to a,p-unsaturated ketones with either benzyl or tert-butyl mercaptane (Scheme 5.30) [58a]. The same catalyst could be further extended to oxa-Michael addition to enones by optimizing the ratio of acidic additive and solvents (Scheme 5.30) [58b]. [Pg.165]

Azirines (three-membered cyclic imines) are related to aziridines by a single redox step, and these reagents can therefore function as precursors to aziridines by way of addition reactions. The addition of carbon nucleophiles has been known for some time [52], but has recently undergone a renaissance, attracting the interest of several research groups. The cyclization of 2-(0-tosyl)oximino carbonyl compounds - the Neber reaction [53] - is the oldest known azirine synthesis, and asymmetric variants have been reported. Zwanenburg et ah, for example, prepared nonracemic chiral azirines from oximes of 3-ketoesters, using cinchona alkaloids as catalysts (Scheme 4.37) [54]. [Pg.134]

Catalytic enantioselective nucleophilic addition of nitroalkanes to electron-deficient alke-nes is a challenging area in organic synthesis. The use of cinchona alkaloids as chiral catalysts has been studied for many years. Asymmetric induction in the Michael addition of nitroalkanes to enones has been carried out with various chiral bases. Wynberg and coworkers have used various alkaloids and their derivatives, but the enantiomeric excess (ee) is generally low (up to 20%).199 The Michael addition of methyl vinyl ketone to 2-nitrocycloalkanes catalyzed by the cinchona alkaloid cinchonine affords adducts in high yields in up to 60% ee (Eq. 4.137).200... [Pg.118]

In summary, the reaction of osmium tetroxide with alkenes is a reliable and selective transformation. Chiral diamines and cinchona alkakoid are most frequently used as chiral auxiliaries. Complexes derived from osmium tetroxide with diamines do not undergo catalytic turnover, whereas dihydroquinidine and dihydroquinine derivatives have been found to be very effective catalysts for the oxidation of a variety of alkenes. OsC>4 can be used catalytically in the presence of a secondary oxygen donor (e.g., H202, TBHP, A -methylmorpholine-/V-oxide, sodium periodate, 02, sodium hypochlorite, potassium ferricyanide). Furthermore, a remarkable rate enhancement occurs with the addition of a nucleophilic ligand such as pyridine or a tertiary amine. Table 4-11 lists the preferred chiral ligands for the dihydroxylation of a variety of olefins.61 Table 4-12 lists the recommended ligands for each class of olefins. [Pg.224]

In addition to metal catalysts, organocatalysts could also be used in asymmetric cyanation reactions. Chiral Lewis bases, modified cinchona alkaloids, catalyzed asymmetric cyanation of ketones by using ethyl cyanoformate as the cyanide source (Scheme 5.34)." Similar to metal-catalyzed reactions, ethyl cyanoformate was first activated by chiral Lewis bases to form active nucleophiles. Various acyclic and cyclic dialkyl ketones were transformed into the desired products. Because of using... [Pg.148]

Preliminary mechanistic studies show no polymerization of the unsaturated aldehydes under Cinchona alkaloid catalysis, thereby indicating that the chiral tertiary amine catalyst does not act as a nucleophilic promoter, similar to Baylis-Hilhnan type reactions (Scheme 1). Rather, the quinuclidine nitrogen acts in a Brpnsted basic deprotonation-activation of various cychc and acyclic 1,3-dicarbonyl donors. The conjugate addition of the 1,3-dicarbonyl donors to a,(3-unsaturated aldehydes generated substrates with aU-carbon quaternary centers in excellent yields and stereoselectivities (Scheme 2) Utility of these aU-carbon quaternary adducts was demonstrated in the seven-step synthesis of (H-)-tanikolide 14, an antifungal metabolite. [Pg.150]

The first organocatalyzed conjugate addition of a-substituted p-ketoester to a,P-unsaturated ketones was presented by Deng et al. [42] (Scheme 3). Although traditional Cinchona alkaloids were efficient catalysts for conjugate addition of carbon nucleophiles to nitroalkenes and sulfones, replacement of the C(9)-OH with an ester group (Q-7b) showed great improvement in stereoselectivity. The reaction is applicable to a variety of cyclic and acyclic enones (16,18). [Pg.151]

In the initial screening of various Cinchona alkaloids, the addition of diethyl phosphate 41 to IV-Boc imine 40 in toluene revealed the key role of the free hydroxyl group of the catalyst. Replacing the C(9)-OH group with esters or amides only results in poor selectivity. Quinine (Q) was identified as an ideal catalyst. A mechanistic proposal for the role of quinine is presented. Hydrogen-bonding by the free C(9)-hydroxyl group and quinuclidine base activation of the phosphonate into a nucleophilic phosphite species are key to the reactivity of this transformation (Scheme 9). [Pg.154]

New catalyst design further highlights the utility of the scaffold and functional moieties of the Cinchona alkaloids. his-Cinchona alkaloid derivative 43 was developed by Corey [49] for enantioselective dihydroxylation of olefins with OsO. The catalyst was later employed in the Strecker hydrocyanation of iV-allyl aldimines. The mechanistic logic behind the catalyst for the Strecker reaction presents a chiral ammonium salt of the catalyst 43 (in the presence of a conjugate acid) that would stabilize the aldimine already activated via hydrogen-bonding to the protonated quinuclidine moiety. Nucleophilic attack by cyanide ion to the imine would give an a-amino nitrile product (Scheme 10). [Pg.155]

The asymmetric conjugate additions with thiol nucleophiles was further expanded to 2-mercaptobenzaldehydes [98]. Wang had previously developed a domino Michael-aldol reaction promoted by Cinchona alkaloids, and now illustrated the utihty of cyclohexane-diamine bifunctionalized catalysts for the domino... [Pg.176]


See other pages where Cinchona nucleophilic catalysts is mentioned: [Pg.315]    [Pg.255]    [Pg.2]    [Pg.113]    [Pg.189]    [Pg.157]    [Pg.5]    [Pg.163]    [Pg.48]    [Pg.2]    [Pg.4]    [Pg.119]    [Pg.350]    [Pg.319]    [Pg.129]    [Pg.306]    [Pg.360]    [Pg.5]    [Pg.23]    [Pg.336]    [Pg.117]    [Pg.323]    [Pg.323]    [Pg.117]    [Pg.149]    [Pg.157]    [Pg.158]    [Pg.173]    [Pg.265]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Catalyst, nucleophilicity

Catalysts nucleophilic

Cinchona

Cinchona alkaloid catalysts nucleophilic substitution

Cinchona alkaloid-based catalysts nucleophilic substitution

Cinchona catalyst

Nucleophile catalyst

© 2024 chempedia.info