Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cinchona alkaloids aldehydes

Arai and co-workers have used chiral ammonium salts 89 and 90 (Scheme 1.25) derived from cinchona alkaloids as phase-transfer catalysts for asymmetric Dar-zens reactions (Table 1.12). They obtained moderate enantioselectivities for the addition of cyclic 92 (Entries 4—6) [43] and acyclic 91 (Entries 1-3) chloroketones [44] to a range of alkyl and aromatic aldehydes [45] and also obtained moderate selectivities on treatment of chlorosulfone 93 with aromatic aldehydes (Entries 7-9) [46, 47]. Treatment of chlorosulfone 93 with ketones resulted in low enantioselectivities. [Pg.23]

Wynberg3 has also effected stereoselective addition of (C2H5)2Zn to aryl aldehydes using cinchona alkaloids, particularly quinine and quinidine, which result in (R)- and (S)-alcohols in excess, respectively. The highest enantiomeric excess, 92% ee, was observed with o-ethoxybenzaldehyde catalyzed by quinine. [Pg.234]

Aldol and Related Condensations As an elegant extension of the PTC-alkylation reaction, quaternary ammonium catalysts have been efficiently utilized in asymmetric aldol (Scheme 11.17a)" and nitroaldol reactions (Scheme ll.lTb) for the constmction of optically active p-hydroxy-a-amino acids. In most cases, Mukaiyama-aldol-type reactions were performed, in which the coupling of sUyl enol ethers with aldehydes was catalyzed by chiral ammonium fluoride salts, thus avoiding the need of additional bases, and allowing the reaction to be performed under homogeneous conditions. " It is important to note that salts derived from cinchona alkaloids provided preferentially iyw-diastereomers, while Maruoka s catalysts afforded awh-diastereomers. [Pg.338]

Preliminary mechanistic studies show no polymerization of the unsaturated aldehydes under Cinchona alkaloid catalysis, thereby indicating that the chiral tertiary amine catalyst does not act as a nucleophilic promoter, similar to Baylis-Hilhnan type reactions (Scheme 1). Rather, the quinuclidine nitrogen acts in a Brpnsted basic deprotonation-activation of various cychc and acyclic 1,3-dicarbonyl donors. The conjugate addition of the 1,3-dicarbonyl donors to a,(3-unsaturated aldehydes generated substrates with aU-carbon quaternary centers in excellent yields and stereoselectivities (Scheme 2) Utility of these aU-carbon quaternary adducts was demonstrated in the seven-step synthesis of (H-)-tanikolide 14, an antifungal metabolite. [Pg.150]

Highly enantioselective organocatalytic Mannich reactions of aldehydes and ketones have been extensively stndied with chiral secondary amine catalysts. These secondary amines employ chiral prolines, pyrrolidines, and imidazoles to generate a highly active enamine or imininm intermediate species [44], Cinchona alkaloids were previonsly shown to be active catalysts in malonate additions. The conjngate addition of malonates and other 1,3-dicarbonyls to imines, however, is relatively nnexplored. Snbseqnently, Schans et al. [45] employed the nse of Cinchona alkaloids in the conjngate addition of P-ketoesters to iV-acyl aldimines. Highly enantioselective mnltifnnctional secondary amine prodncts were obtained with 10 mol% cinchonine (Scheme 5). [Pg.152]

Another type of Cinchona alkaloid catalyzed reactions that employs azodicarbo-xylates includes enantioselective allylic amination. Jprgensen [51-53] investigated the enantioselective electrophilic addition to aUyhc C-H bonds activated by a chiral Brpnsted base. Using Cinchona alkaloids, the first enantioselective, metal-free aUyhc amination was reported using alkylidene cyanoacetates with dialkyl azodi-carboxylates (Scheme 12). The product was further functionalized and used in subsequent tandem reactions to generate useful chiral building blocks (52, 53). Subsequent work was applied to other types of allylic nitriles in the addition to a,P-unsaturated aldehydes and P-substituted nitro-olefins (Scheme 13). [Pg.156]

Early example of Cinchona alkaloid catalyzed Diels-Alder of 2-pyrone and a, 3-unsaturated aldehyde... [Pg.163]

Okamura and Nakatani [65] revealed that the cycloaddition of 3-hydroxy-2-py-rone 107 with electron deficient dienophiles such as simple a,p-unsaturated aldehydes form the endo adduct under base catalysis. The reaction proceeds under NEtj, but demonstrates superior selectivity with Cinchona alkaloids. More recently, Deng et al. [66], through use of modified Cinchona alkaloids, expanded the dienophile pool in the Diels-Alder reaction of 3-hydroxy-2-pyrone 107 with a,p-unsaturated ketones. The mechanistic insight reveals that the bifunctional Cinchona alkaloid catalyst, via multiple hydrogen bonding, raises the HOMO of the 2-pyrone while lowering the LUMO of the dienophile with simultaneous stereocontrol over the substrates (Scheme 22). [Pg.163]

Novel asymmetric conjugate-type reactions have been accomplished with Cinchona alkaloid-derived chiral thioureas, including less traditional reactions such as asymmetric decarboxylation [71]. In the following discussion, asymmetric reactions involving nitro-olefms, aldehydes and enones, and imines will be highlighted (Fig. 5). [Pg.164]

Nitroaldol (Henry) reactions of nitroalkanes and a carbonyl were investigated by Hiemstra [76], Based on their earlier studies with Cinchona alkaloid derived catalysts, they were able to achieve moderate enantioselectivities between aromatic aldehydes and nitromethane. Until then, organocatalyzed nitroaldol reactions displayed poor selectivities. Based on prior reports by Sods [77], an activated thionrea tethered to a Cinchona alkaloid at the quinoline position seemed like a good catalyst candidate. Hiemstra incorporated that same moiety to their catalyst. Snbsequently, catalyst 121 was used in the nitroaldol reaction of aromatic aldehydes to generate P-amino alcohols in high yield and high enantioselectivities (Scheme 27). [Pg.167]

Uozumi has explored a series of (25, 4/ )-4-hydroxyproline-derived 2-aryl-6-hydroxy-hexahydro-lFf-pyrrolo[l,2-c]imidazolones as potential alternatives to cinchona alkaloid-based catalysts for the alcoholative ASD of meio-anhydrides (Fig. 16) [226]. Uozumi screened a small library of catalysts prepared by a four-step, two-pot reaction sequence from 4-hydroxyproline in combination with an aldehyde and an aniline. The most selective member, compound 67, mediated the methanolytic ASD of cw-hexahydrophthalic anhydride in 89% ee when employed at the 10 mol% level for 20 h at -25 °C in toluene [226]. [Pg.272]

Scheme 6.146 Representative adducts obtained from the asymmetric Henry reaction between nitromethane and (hetero)aromatic aldehydes under bifunctional catalysis of C6 -thiourea-functionalized cinchona alkaloid 131. Scheme 6.146 Representative adducts obtained from the asymmetric Henry reaction between nitromethane and (hetero)aromatic aldehydes under bifunctional catalysis of C6 -thiourea-functionalized cinchona alkaloid 131.
Alkylation of Schiff bases, derived from amino acid and non-optically active aromatic aldehydes by phase-transfer catalysis in the presence of cinchona alkaloid derived quaternary ammonium salts, gave ce values of up to 50% l42. [Pg.757]

Some bifunctional 6 -OH Cinchona alkaloid derivatives catalyse the enantioselective hydroxyalkylation of indoles by aldehydes and a-keto esters.44 Indole, for example, can react with ethyl glyoxylate to give mainly (39) in 93% ee. The enan- tioselective reaction of indoles with iV-sulfonyl aldimines [e.g. (40)] is catalysed by the Cu(OTf)2 complex of (S)-benzylbisoxazoline (37b) to form 3-indolylmethanamine derivatives, in up to 96% ee [e.g. (41a)] 45 Some 9-thiourea Cinchona alkaloids have been found to catalyse the formation of 3-indolylmethanamines [e.g. (41b)] from indoles and /V-PhS02-phenyli mines in 90% ee.46 Aryl- and alkyl-imines also give enantioselective reactions. [Pg.194]

Very recently, the Nelson group expanded scope of this reaction by applying cinchona alkaloid-Lewis acid catalyst systems [142b]. In the presence of O-trimethyl-silylated quinine or quinidine, and LiCICN as Lewis acid cocatalyst, a broad range of aliphatic and aromatic aldehydes was converted into the corresponding... [Pg.181]

A direct aldol-Tishchenko reaction of aromatic aldehydes with ketones proceeds with stereocontrol of up to five contiguous centres in a chain, using titanium(IV) r-butoxide and cinchona alkaloids.146 A tricyclic transition state is proposed to explain the high (g) degree of stereoselection. [Pg.17]

Very good enantioselectivities were recently reported by Hatakeyama and coworkers [33]. The reaction of a variety of aldehydes 28 with the highly reactive 1,1,1,3,3,3-hexafluoro iso-propylacrylate 27 using modified Cinchona-alkaloids as the catalyst resulted, at a temperature of-55 °C, in formation of the Baylis-Hillman-products 30 in 31-58% yields with 91-99% ee (Scheme 6). The use of the tricyclic derivative 29, which was prepared from quinidine in one step [34], proved crucial in order to obtain high enantioselectivities. The success of catalyst 29 can be explained by the (compared with quinidine) increased nucleophilicity, by the... [Pg.170]

The use of bifunctional thiourea-substituted cinchona alkaloid derivatives has continued to gamer interest, with the Deng laboratory reporting the use of a 6 -thiourea-substituted cinchona derivative for both the Mannich reactions of malo-nates with imines [136] and the Friedel-Crafts reactions of imines with indoles [137]. In both reports, a catalyst loading of 10-20 mol% provided the desired products in almost uniformly high yields and high enantioselectivities. Thiourea-substituted cinchona derivatives have also been used for the enantioselective aza-Henry reactions of aldimines [138] and the enantioselective Henry reactions of nitromethane with aromatic aldehydes [139]. [Pg.250]

Early work had shown cinchonamine to give color reactions typical of indole alkaloids (7), and this was also evident from its UV-spectrum (8). The base differs from the major cinchona alkaloids in yielding, upon oxidation with chromic acid (6), 3-vinylquinuclidine-8-carboxylic acid (III), mp 209°, [a]D — 29° (CHCI3), which was first obtained from quinamine (9). The nature of the remainder of the molecule followed from the conversion of cinchonamine into 0,iVb-diacetylallocinchon-amine (I), mp 159°, [a]D — 7° (CHCI3), by refluxing acetic anhydride and its subsequent oxidation to 3-/3-acetoxyethylindole-2-aldehyde (H) (6). [Pg.238]

Ketones can be converted to cyanohydrin (9-carbonates, R2C(CN)OC02R, by reaction with EtOiC—CN. In the presence of a Cinchona alkaloid, the product is formed with good enantioselectivity. " " Potassium cyanide and acetic anhydride reacts with an aldehyde in the presence of a chiral titanium catalyst to give an... [Pg.1391]


See other pages where Cinchona alkaloids aldehydes is mentioned: [Pg.168]    [Pg.4]    [Pg.156]    [Pg.315]    [Pg.317]    [Pg.149]    [Pg.260]    [Pg.286]    [Pg.19]    [Pg.6]    [Pg.152]    [Pg.128]    [Pg.159]    [Pg.235]    [Pg.107]    [Pg.329]    [Pg.939]    [Pg.231]    [Pg.249]    [Pg.84]    [Pg.498]    [Pg.156]    [Pg.48]    [Pg.74]    [Pg.75]    [Pg.77]    [Pg.78]   
See also in sourсe #XX -- [ Pg.162 , Pg.163 , Pg.171 ]




SEARCH



Aldehydes Alkaloids

Cinchona

© 2024 chempedia.info