Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chymotrypsin function

The approach is illustrated by a-chymotrypsin functionalized polystyrene nanofibers. The catalytic effectiveness of nanofibers with 27.4% of surface coverage by a monolayer of enzyme was reported to be 65% of that of the native enz5mie when aqueous n-succinyl-ala-ala-pro-phe p-nitroandide... [Pg.220]

Figure 2.19 Organization of polypeptide chains into domains. Small protein molecules like the epidermal growth factor, EGF, comprise only one domain. Others, like the serine proteinase chymotrypsin, are arranged in two domains that are required to form a functional unit (see Chapter 11). Many of the proteins that are involved in blood coagulation and fibrinolysis, such as urokinase, factor IX, and plasminogen, have long polypeptide chains that comprise different combinations of domains homologous to EGF and serine proteinases and, in addition, calcium-binding domains and Kringle domains. Figure 2.19 Organization of polypeptide chains into domains. Small protein molecules like the epidermal growth factor, EGF, comprise only one domain. Others, like the serine proteinase chymotrypsin, are arranged in two domains that are required to form a functional unit (see Chapter 11). Many of the proteins that are involved in blood coagulation and fibrinolysis, such as urokinase, factor IX, and plasminogen, have long polypeptide chains that comprise different combinations of domains homologous to EGF and serine proteinases and, in addition, calcium-binding domains and Kringle domains.
Benzamide known as benti romide, is a chymotrypsin substrate of value as a diagnostic acid for assessment of pancreatic function. It is synthesized by amide formation between... [Pg.60]

The serine proteases are the most extensively studied class of enzymes. These enzymes are characterized by the presence of a unique serine amino acid. Two major evolutionary families are presented in this class. The bacterial protease subtilisin and the trypsin family, which includes the enzymes trypsin, chymotrypsin, elastase as well as thrombin, plasmin, and others involved in a diverse range of cellular functions including digestion, blood clotting, hormone production, and complement activation. The trypsin family catalyzes the reaction ... [Pg.170]

Chymotrypsin, 170,171, 172, 173 Classical partition functions, 42,44,77 Classical trajectories, 78, 81 Cobalt, as cofactor for carboxypeptidase A, 204-205. See also Enzyme cofactors Condensed-phase reactions, 42-46, 215 Configuration interaction treatment, 14,30 Conformational analysis, 111-117,209 Conjugated gradient methods, 115-116. See also Energy minimization methods Consistent force field approach, 113 Coulomb integrals, 16, 27 Coulomb interactions, in macromolecules, 109, 123-126... [Pg.230]

Organic solvent can affect the enzyme specificity [76]. Authors have indicated that transesterification of l,4-butyloxy-2-octylbenzene and butanol in presence of lipases from Pseudomonas can produce two different products when using hydrophilic (acetonitrile) or hydrophobic (toluene) solvents. Zaks and Klibanov [16], demonstrated that subtilisine and a-chymotrypsine specificites can be changed as a function of solvent types. This is true for a limited number of biocatalysts. [Pg.564]

However, diffusion of the reactive QM out of the enzyme active site is a major concern. For instance, a 2-acyloxy-5-nitrobenzylchloride does not modify any nucleophilic residue located within the enzyme active site but becomes attached to a tryptophan residue proximal to the active site of chymotrypsin or papain.23,24 The lack of inactivation could also be due to other factors the unmasked QM being poorly electrophilic, active site residues not being nucleophilic enough, or the covalent adduct being unstable. Cyclized acyloxybenzyl molecules of type a could well overcome the diffusion problem. They will retain both the electrophilic hydroxybenzyl species b, and then the tethered QM, in the active site throughout the lifetime of the acyl-enzyme (Scheme 11.1). This reasoning led us to synthesize functionalized... [Pg.362]

Bromomethyl-3,4-dibromo-3,4-dihydrocoumarin 1 (Fig. 11.4) and its chloro-methylated analogue 2b rapidly and progressively inactivate a-chymotrypsin and also the activities of a series of trypsin-like proteases. A benzyl substituent characteristic of good substrates of a-chymotrypsin was introduced at the 3-position to make inhibition more selective. This substituted dihydrocoumarin 3 irreversibly inhibited a-chymotrypsin and other proteases. These functionalized six-membered aromatic lactones, and their five- and seven-membered counterparts, 3//-benzofuran-2-ones 2a26 and 4,5-dihydro-3//-benzo[b]oxepin-2-ones 2c,27 were the first efficient suicide inhibitors of serine proteases. Their postulated mechanism of action is shown in Scheme 11.2. [Pg.363]

Coumarincarboxylate derivatives are versatile, efficient, low molecular weight, nonpeptidic protease inhibitors. Both esters and amides behave as time-dependent inhibitors of a-chymotrypsin but the esters are clearly more efficient than the corresponding amides. The criteria for a suicide mechanism are met. The presence of a latent alkylating function at the 6-position (chloromethyl group) is required to produce to inactivation by a suicide mechanism (Scheme 11.3, pathway a). Aryl esters, in particular the meta-substituted phenyl esters are the best inhibitors. Thus, m-chlorophenyl 6-(chloromethyl)-2-oxo-27/-l-benzopyran-3-carboxylate is one of the well-known inactivator of a-chymotrypsin (kJK, = 76(),000M s 1 at pH 7.5 and 25 °C, Table 11.1). [Pg.364]

The 6-chloromethyl substituent (series 5 and 6) is required for the inactivation of a-chymotrypsin. Nevertheless, there is only a transient inactivation of HLE and thrombin through the formation of a stable acyl-enzyme in spite of the presence of this group as demonstrated by the spontaneous or hydroxylamine-accelerated reactivation of the treated enzymes (Scheme 11.3, pathway b).21 HLE is specifically inhibited when such an alkylating function is absent (series 7), always through the formation of a transient acyl-enzyme (Table 11.2). [Pg.365]

These molecules do not inhibit a-chymotrypsin, probably because the protease is unable to open lactam rings in which the amide function has a cis configuration.50... [Pg.368]

The enzymatic activities of O -chymotrypsin in solution and adsorbed at the different surfaces are presented in Fig. 11, where the specific enzymatic activity (defined as activity per unit mass of protein) is plotted as a function of temperature. The enzyme loses activity due to adsorption. On the hydrophobic Teflon and PS surfaces, the activity is completely gone, whereas on the hydrophilic silica surface, or-chymotrypsin has retained most of its biological function. These differences are in agreement with the adsorption isotherms and the circular dichroism spectra. The influence of the hydrophobicity of the sorbent surface on the affinity of the protein for the sorbent surface, as judged from the rising parts of the adsorption isotherms (Fig. 8), suggests that the proteins are more perturbed and, hence, less biologically active when adsorbed at hydrophobic surfaces. Also, the CD spectra indicate that adsorption-induced structural perturbations are more severe at hydrophobic surfaces. [Pg.119]

Hydroxamate-, imidazole- and thiol-functionalized micelles and chymotrypsin. Rate comparisons... [Pg.286]

Chymotrypsin, in addition to its proteolytic activity, can also function as an esterase.1 It is inactivated by D.F.P., etc. (p. 186). The esterases firmly bind the phosphorus of D.F.P., and in the case of chymotrypsin the reaction is bimolecular, yielding a crystalline derivative containing two isopropoxy groups and one atom of phosphorus per protein molecule, but no fluorine.2... [Pg.207]

Proteins can be classed into groups based on their overall 3-D shapes, known as protein folds (O Figure 22-la). In general, proteins that have similar functions have similar folds. This means that if you are the proud parent of an unknown protein whose structure is solved, it may be possible to make educated guesses as to the function of the protein based on its overall fold. There are a number of well-known exceptions to this [notably, the serine protease family, subtilisin and trypsin/chymotrypsin (Hartley, 1979)], but the... [Pg.457]

Numerous suggestions have been made that enzymes might owe part of their catalytic efficiency to the opportunity they afford for stabilization of intermediates or transition states by hydrogen bonding to functional groups near the active site. For example, in the case of (x-chymotrypsin this might be represented as in [43] where... [Pg.56]


See other pages where Chymotrypsin function is mentioned: [Pg.307]    [Pg.166]    [Pg.307]    [Pg.166]    [Pg.147]    [Pg.520]    [Pg.64]    [Pg.29]    [Pg.101]    [Pg.38]    [Pg.53]    [Pg.369]    [Pg.377]    [Pg.93]    [Pg.39]    [Pg.146]    [Pg.205]    [Pg.132]    [Pg.7]    [Pg.156]    [Pg.207]    [Pg.9]    [Pg.171]    [Pg.237]    [Pg.259]    [Pg.262]    [Pg.85]    [Pg.316]    [Pg.64]    [Pg.446]    [Pg.76]    [Pg.3]    [Pg.4]    [Pg.37]    [Pg.38]    [Pg.39]    [Pg.150]   
See also in sourсe #XX -- [ Pg.88 ]




SEARCH



Chymotrypsin

Chymotrypsin, histidine function

Chymotrypsins

© 2024 chempedia.info