Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromium extraction

To be able to carry out hexavalent chromium extraction and analysis in a safe and controlled manner. [Pg.49]

It difiers from the cof per. chromium oxide catalyst described in Section VI,6 in that it has not been extracted with 10 per cent, acetic acid—a process which presumably removes some copper oxide. [Pg.321]

The most abundant natural steroid is cholesterol. It can be obtained in large quantides from wool fat (15%) or from brain or spinal chord tissues of fat stock (2-4%) by extraction with chlorinated hydrocarbons. Its saturated side-chain can be removed by chromium trioxide oxidation, but the yield of such reactions could never be raised above 8% (see page 118f.). [Pg.285]

Tannins occur in many plants and are separated by extraction. At present, only quebracho extract is used as a mud thinner in significant quantity in the United States. Quebracho is an acidic material and performs best at high pH. It is an excellent thinner for lime-treated and cement-contaminated muds. However, it is not effective at high salt concentrations. Sulfomethylated tannin products are functional over a wide range of pH and salinity and have either been treated with chromium for good thermal stabiUty (58) or are chrome free. Concentrations of tannin additives are ca 1.5—18 kg/m (0.5—6 lb/bbl). [Pg.180]

Chromium Removal System. Chlorate manufacturers must remove chromium from the chlorate solution as a result of environmental regulations. During crystallization of sodium chlorate, essentially all of the sodium dichromate is recycled back to the electrolyzer. Alternatively, hexavalent chromium, Cr, can be reduced and coprecipitated in an agitated reactor using a choice of reducing agents, eg, sodium sulfide, sulfite, thiosulfate, hydrosulfite, hydrazine, etc. The product is chromium(III) oxide [1333-82-0] (98—106). Ion exchange and solvent extraction techniques have also... [Pg.499]

Chromium-containing wood preservatives and their chemical compositions are Hsted ia Table 13 (199). Chromium compounds have a triple function ia wood preservation (200). Most importantiy, after impregnation of the wood the Cr(VI) compounds used ia the formulations react with the wood extractives and the other preservative salts to produce relatively insoluble complexes from which preservative leaches only very slowly. This mechanism has been studied in the laboratory (201—206) and the field (207). Finally, although most of the chromium is reduced to chromium (ITT), there is probably some slight contribution of the chromium (VT) to the preservative value (208). [Pg.147]

ABOUT EXTRACTION AND STABILITY OF HEXAVALENT CHROMIUM IN SOILS AND FERTILIZERS... [Pg.256]

On his return home in 1911, Honda was appointed professor of physies at the new Tohoku Imperial University in Sendai, in the north of Japan this institution had been established only in 1906, when the finance minister twisted the arm of an industrialist who had made himself unpopular because of pollution eaused by his copper mines and extracted the necessary funds to build the new university. A provisional institute of physical and chemical research was initiated in 1916, divided into a part devoted to novel plastics and another to metals. This proved to be Honda s lifetime domain he assembled a lively team of young physicists and chemists. In the same year, Honda invented a high-cobalt steel also containing tungsten and chromium, which had by far the highest coercivity of any permanent-magnet material then known. He called it KS steel, for K. Sumitomo, one of his sponsors, and it made Honda famous. [Pg.525]

The reactions are generally run at room temperature or below. With steroids the product is usually isolated by addition of the reaction mixture to water followed by filtration or extraction. The inorganic product of the reaction, chromium III, is soluble in neutral or aqueous acid solutions and can be removed by washing. When steroidal amines are oxidized, the work-up is usually modified such that the steroid may be extracted from the insoluble basic chromium III salts. °... [Pg.223]

A 8 A solution of chromic acid is prepared by dissolving 26.72 g of chromium trioxide in a mixture of 23 ml of concentrated sulfuric acid and enough water to make the total volume of the solution 100 ml. Rapid dropwise addition of a slight excess of this reagent to an acetone solution (2 % or less) of the hydroxy steroid at room temperature or below with stirring usually results in complete conversion to ketone in less than 10 min. The product is isolated by dilution with water followed by filtration or extraction. [Pg.229]

To which a solution of manganese sulfate (15 g), 3.1 g of chromium trioxide, 72 ml of water and 3.5 ml of sulfuric acid was added. After stirring for 3.5 hours at 3°C, extracted with diethyl ether. The organic layer was washed with water, dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using ethyl acetate-benzene (1 1) as eluent to give 2.35 g of the title compound. [Pg.719]

Other fluorinated derivatives of acetylacetone are trifluoroacetylacetone (CF3COCH2COCH3) and hexafluoroacetylacetone (CF3COCH2COCF3), which form stable volatile chelates with aluminium, beryllium, chromium(III) and a number of other metal ions. These reagents have consequently been used for the solvent extraction of such metal ions, with subsequent separation and analysis by gas chromatography [see Section 9.2(2)]. [Pg.170]

The reaction is a sensitive one, but is subject to a number of interferences. The solution must be free from large amounts of lead, thallium (I), copper, tin, arsenic, antimony, gold, silver, platinum, and palladium, and from elements in sufficient quantity to colour the solution, e.g. nickel. Metals giving insoluble iodides must be absent, or present in amounts not yielding a precipitate. Substances which liberate iodine from potassium iodide interfere, for example iron(III) the latter should be reduced with sulphurous acid and the excess of gas boiled off, or by a 30 per cent solution of hypophosphorous acid. Chloride ion reduces the intensity of the bismuth colour. Separation of bismuth from copper can be effected by extraction of the bismuth as dithizonate by treatment in ammoniacal potassium cyanide solution with a 0.1 per cent solution of dithizone in chloroform if lead is present, shaking of the chloroform solution of lead and bismuth dithizonates with a buffer solution of pH 3.4 results in the lead alone passing into the aqueous phase. The bismuth complex is soluble in a pentan-l-ol-ethyl acetate mixture, and this fact can be utilised for the determination in the presence of coloured ions, such as nickel, cobalt, chromium, and uranium. [Pg.684]

Molybdenum(VI), vanadium(V), mercury, and iron interfere permanganates, if present, may be removed by boiling with a little ethanol. If the ratio of vanadium to chromium does not exceed 10 1, nearly correct results may be obtained by allowing the solution to stand for 10-15 minutes after the addition of the reagent, since the vanadium-diphenylcarbazide colour fades fairly rapidly. Vanadate can be separated from chromate by adding oxine to the solution and extracting at a pH of about 4 with chloroform chromate remains in the aqueous solution. Vanadium as well as iron can be precipitated in acid solution with cupferron and thus separated from chromium (III). [Pg.687]


See other pages where Chromium extraction is mentioned: [Pg.355]    [Pg.1063]    [Pg.145]    [Pg.869]    [Pg.83]    [Pg.162]    [Pg.355]    [Pg.1063]    [Pg.145]    [Pg.869]    [Pg.83]    [Pg.162]    [Pg.98]    [Pg.101]    [Pg.37]    [Pg.394]    [Pg.556]    [Pg.565]    [Pg.486]    [Pg.364]    [Pg.270]    [Pg.137]    [Pg.142]    [Pg.378]    [Pg.435]    [Pg.49]    [Pg.176]    [Pg.256]    [Pg.413]    [Pg.113]    [Pg.319]    [Pg.231]    [Pg.150]    [Pg.280]    [Pg.281]    [Pg.1239]    [Pg.311]    [Pg.546]    [Pg.727]   
See also in sourсe #XX -- [ Pg.343 ]

See also in sourсe #XX -- [ Pg.246 ]

See also in sourсe #XX -- [ Pg.467 ]




SEARCH



© 2024 chempedia.info