Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromatography column selection

To minimize the mobile phase s contribution to conductivity, an ion-suppressor column is placed between the analytical column and the detector. This column selectively removes mobile-phase electrolyte ions without removing solute ions, for example, in cation ion-exchange chromatography using a dilute solution of HCl as... [Pg.592]

Schematic diagram of an orthogonal Q/TOF instrument. In this example, an ion beam is produced by electrospray ionization. The solution can be an effluent from a liquid chromatography column or simply a solution of an analyte. The sampling cone and the skimmer help to separate analyte ions from solvent, The RF hexapoles cannot separate ions according to m/z values and are instead used to help confine the ions into a narrow beam. The quadrupole can be made to operate in two modes. In one (wide band-pass mode), all of the ion beam passes through. In the other (narrow band-pass mode), only ions selected according to m/z value are allowed through. In narrow band-pass mode, the gas pressure in the middle hexapole is increased so that ions selected in the quadrupole are caused to fragment following collisions with gas molecules. In both modes, the TOF analyzer is used to produce the final mass spectrum. Schematic diagram of an orthogonal Q/TOF instrument. In this example, an ion beam is produced by electrospray ionization. The solution can be an effluent from a liquid chromatography column or simply a solution of an analyte. The sampling cone and the skimmer help to separate analyte ions from solvent, The RF hexapoles cannot separate ions according to m/z values and are instead used to help confine the ions into a narrow beam. The quadrupole can be made to operate in two modes. In one (wide band-pass mode), all of the ion beam passes through. In the other (narrow band-pass mode), only ions selected according to m/z value are allowed through. In narrow band-pass mode, the gas pressure in the middle hexapole is increased so that ions selected in the quadrupole are caused to fragment following collisions with gas molecules. In both modes, the TOF analyzer is used to produce the final mass spectrum.
A third parameter to consider is the column construction. Thus the sample applicator should provide optimal sample application to give the most performance possible out of the packed bed. Constructions should also allow simple, fast, and reproducible packing of the column. Because costs for repacking of columns are a substantial operating cost item in industrial chromatography, the selection of column construction from this point of view is also important. Some novel column constructions allow very simple procedures both for laboratory and for industrial scale (e.g., INdEX columns, see Section V). [Pg.62]

TABLE 4.11 Recommended Column Selection Guide for High-Performance Gel-Filtration Chromatography... [Pg.132]

Figure 2.12 Schematic representation of an on-line SPE-GC system consisting of three switching valves (VI-V3), two pumps (a solvent-delivery unit (SDU) pump and a syringe pump) and a GC system equipped with a solvent-vapour exit (SVE), an MS instrument detector, a retention gap, a retaining precolumn and an analytical column. Reprinted from Journal of Chromatography, AIIS, A. J. H. Eouter et al, Analysis of microcontaminants in aqueous samples hy fully automated on-line solid-phase extraction-gas chromatography-mass selective detection , pp. 67-83, copyright 1996, with permission from Elsevier Science. Figure 2.12 Schematic representation of an on-line SPE-GC system consisting of three switching valves (VI-V3), two pumps (a solvent-delivery unit (SDU) pump and a syringe pump) and a GC system equipped with a solvent-vapour exit (SVE), an MS instrument detector, a retention gap, a retaining precolumn and an analytical column. Reprinted from Journal of Chromatography, AIIS, A. J. H. Eouter et al, Analysis of microcontaminants in aqueous samples hy fully automated on-line solid-phase extraction-gas chromatography-mass selective detection , pp. 67-83, copyright 1996, with permission from Elsevier Science.
Figure 15.8 Multidimensional GC-MS separation of urinary acids after derivatization with methyl chloroformate (a) pre-column cliromatogram after splitless injection (h) Main-column selected ion monitoring cliromatogram (mass 84) of pyroglutamic acid methyl ester. Adapted from Journal of Chromatography, B 714, M. Heil et ai, Enantioselective multidimensional gas chromatography-mass spectrometry in the analysis of urinary organic acids , pp. 119-126, copyright 1998, with permission from Elsevier Science. Figure 15.8 Multidimensional GC-MS separation of urinary acids after derivatization with methyl chloroformate (a) pre-column cliromatogram after splitless injection (h) Main-column selected ion monitoring cliromatogram (mass 84) of pyroglutamic acid methyl ester. Adapted from Journal of Chromatography, B 714, M. Heil et ai, Enantioselective multidimensional gas chromatography-mass spectrometry in the analysis of urinary organic acids , pp. 119-126, copyright 1998, with permission from Elsevier Science.
Principles and Characteristics Multidimensional gas chromatography (MDGC) is widely used, due to the mobile-phase compatibility between the primary and secondary separating systems, which allows relatively simple coupling with less-complicated interfaces. In its simplest form, 2DGC can be carried out in the off-line mode. The most elementary procedure involves manual collection of effluent from a column, followed by reinjection into another column of a different selectivity (e.g. from an apolar to a polar column). Selecting proper GC-column combinations is critical. In on-line mode, the interface in MDGC must provide for the quantitative transfer of the effluent from one column... [Pg.548]

Other reviews of multidimensional separations have been published. These include a book on polymer characterization by hyphenated and multidimensional techniques (Provder et al., 1995), a review on polymer analysis by 2DLC (van der Horst and Schoenmakers, 2003), and two reviews on two-dimensional techniques in peptide and protein separations (Issaq et al., 2005 Stroink et al., 2005). Reviews on multidimensional separations in biomedical and pharmaceutical analysis (Dixon et al. 2006) and multidimensional column selectivity (Jandera, 2006) were recently published. Suggested nomenclature and conventions for comprehensive multidimensional chromatography were published in 2003 (Schoenmakers et al., 2003), and a book chapter in the Advances in Chromatography series on MDLC was published in 2006 (Shalliker and Gray 2006). [Pg.5]

Jandera, P. (2006). Review column selectivity or two-dimensional liquid chromatography. J. Sep. Sci. 29, 1763-1783. [Pg.7]

As with any separation technique, the desired goal is to maximize peak resolution at the fastest speed. Higher resolution in 2DLC is easier to achieve than when using onedimensional chromatography because selectivity differences between the two different columns can give a resolution enhancement. This is easily seen through the simplified resolution equation, discussed in Chapter 2,... [Pg.143]

SRM 869a Column Selectivity Test Mixture for Liquid Chromatography [44] is composed of three shape-constrained PAHs (phenanthro[3,4-c]phenanthrene, PhPh l,2 3,4 5,6 7,8-tetrabenzonaphthalene, TBN and benzo[a]pyrene, BaP) and is routinely employed to evaluate the shape selectivity of stationary phases. The retention differences between the nonplanar TBN and planar BaP solutes (expressed as a selectivity factor axEN/BaP = provide a numerical assessment of... [Pg.240]

Certificate of Analysis, Standard Reference Material 869a column selectivity test mixture for liquid chromatography (polycyclic aromatic hydrocarbons), National Institute of Standards and Technology (NIST), Gaithersburg, MD, 1998. Available at http //www.nist.gov/SRM... [Pg.291]

Sander, L.C. and Wise, S.A., Effect ofphase length on column selectivity for the separation of polycychc aromatic hydrocarbons by reversed-phase hquid chromatography, Anal. Chem., 59, 2309, 1987. [Pg.295]

Column selector valves can be added on as accessories to allow column switching for multi-dimensional chromatography (to increase the resolution of very complex samples such as in proteomics) or for automatic column selection (up to six columns) to facilitate methods development using different columns. [Pg.58]

Gilroy, J. J., Dolan, J. W. and Snyder, L. R., Column Selectivity in Reversed-phase Chromatography IV. Type-B Alkyl-silica Columns,/. Chromatogr. A, 1000 757—778, 2003. [Pg.122]


See other pages where Chromatography column selection is mentioned: [Pg.182]    [Pg.182]    [Pg.45]    [Pg.47]    [Pg.57]    [Pg.57]    [Pg.62]    [Pg.209]    [Pg.326]    [Pg.88]    [Pg.16]    [Pg.515]    [Pg.741]    [Pg.752]    [Pg.201]    [Pg.234]    [Pg.94]    [Pg.225]    [Pg.115]    [Pg.99]    [Pg.240]    [Pg.485]    [Pg.4]    [Pg.78]    [Pg.120]    [Pg.122]    [Pg.122]    [Pg.122]    [Pg.222]    [Pg.226]    [Pg.24]    [Pg.579]    [Pg.148]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Chromatography selection

Column chromatography

Column chromatography columns

Column selection

Selectivity chromatography

© 2024 chempedia.info