Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromatographic unit operations development

The approach taken is loosely based on the input-process-output meta-model utilized to transform a problem statement into a functional process. The section Scope definition discusses the intended purpose and potential constraints of the isolation effort, followed by an overview of the Toolbox available to the practitioner (input). The section Method development scouting and scale-up reviews platform-based, highly automated approaches to selectivity scouting, development of the isolation as well as options for scaling up the chromatographic separation depending on purpose and constraints (process). The final section. Performing the task, explores a work breakdown structure approach to the preparative isolation of impurities as a unit operation in the development process (output). [Pg.215]

Process validation is the procedure that allows one to establish the critical operating parameters of a manufacturing process. Hence, the constraints imposed by the FDA as part of process control and validation of an SMB process. The total industrial SMB system, as described, is a continuous closed-loop chromatographic process, from the chromatographic to recycling unit and, with the use of numerical simulation software allows the pharmaceutical manufacturer rapidly to design and develop worst-case studies. [Pg.282]

The development of adsorption as a method of fractionation has been analogous to the development of distillation. In both cases the operation was originally carried out in a simple batch unit. After many years, rectification was added and close fractionation became possible. In the case of distillation this was done by adding a packed or bubble plate column to the still kettle. In the case of adsorption it involved the use of an adsorbent-packed column to obtain chromatographic separation, which gave a rectification effect. [Pg.209]

For the synthesis of atorvastatin we developed an efficient process that allows for direct cyanation of lactone 2 [21] to cyanomethyl lactone 3 to finally afford the well known atorvastatin precursor 5 (Scheme 6.3) [22]. It is worth pointing out that the two synthetic routes to the advanced statin intermediates 5 and 6 described here avoid ultra-low temperature chemistry, heavy metal catalysts, metal-organic species, and chromatographic purification steps. The DERA-catalyzed chemistry to form the six-carbon chiral unit is cost competitive and operated on a commercial scale. [Pg.133]

The ultimate selectivity of gas chromatography is determined by the detector. The most selective detectors are spectroscopic, such as Fourier-Transform Infrared or Mass Spectrometer. Automated systems can employ chemometric algorithms to discriminate unresolved chromatographic peaks. These combinations are expensive and require significant computer support. As such, they are more likely to be used in a laboratory for confirmation. Efforts to convert this approach to field units are still under development. The MiniCAMS described above, based on a FPD is a reliable monitor but requires 3-5 min to make a determination. Gas chromatographs also require a source of purified gas for operation and the flame detector requires additional hydrogen and air for operation. This device will have the fewest false positives and the most... [Pg.82]

In the early 1970s, Union Oil developed and patented a chromatographic system based on the principle of a simulated moving bed (SMB) [6-8]. A schematic of a SMB unit is shown in Figure 1.4. Streams of the mobile phase (the desorbent ) and of the feed to separate are continuously injected into the column while streams of the less retained (the raffinate ) and the more retained components (the extract ) are continuously withdrawn, all at constant flow rates. The rotary valves switch periodically the positions in the columns where these streams enter or exit. The operation of SMB imits is discussed in detail in Chapter 17. Manufacturing facilities have been built and are operated for the fractionation of various petroleiun distillates, for example, the selective separation of p-xylene, o-xylene and ethylbenzene from the C7-C8 aromatic fraction of light petroleum reformates, the separation of olefins from paraffins in feed mixtures of hydrocarbons having 10 to 14... [Pg.8]


See other pages where Chromatographic unit operations development is mentioned: [Pg.237]    [Pg.237]    [Pg.227]    [Pg.228]    [Pg.237]    [Pg.237]    [Pg.241]    [Pg.244]    [Pg.245]    [Pg.289]    [Pg.293]    [Pg.294]    [Pg.534]    [Pg.230]    [Pg.380]    [Pg.695]    [Pg.1972]    [Pg.331]    [Pg.196]    [Pg.441]    [Pg.441]    [Pg.64]    [Pg.132]    [Pg.256]    [Pg.265]    [Pg.203]    [Pg.1090]    [Pg.97]    [Pg.386]    [Pg.112]    [Pg.134]    [Pg.10]    [Pg.577]    [Pg.60]    [Pg.15]    [Pg.454]    [Pg.64]    [Pg.177]    [Pg.181]    [Pg.256]    [Pg.265]    [Pg.472]    [Pg.830]    [Pg.858]   


SEARCH



Development chromatographic

Operational unit

Unit operations

Unit operations development

© 2024 chempedia.info