Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromatographic theory solvophobic

The theoretical treatment of the hydrophobic effect is limited to pure aqueous systems. To describe chromatographic separations in RPC Horvath and Melander developed the solvophobic theory [47]. In this theory, no special assumptions are made about the properties of solute and solvent, and besides hydrophobic interaction electrostatic and other specific interactions are included. The theory has been valuable to describe the retention of nonpolar [48], polar [49], and ionizable [50] solutes in RPC. The modulation of selectivity via secondary equilibria (variation of pH, ion pair formation [51]) can also be described. On the other hand, it is not a problem to find examples of dispersive interactions in literature, e.g., separation of carotinoids with a long chain (C30) RP gives a higher selectivity compared to standard RP C18 cyclohexanols are preferentially retarded on cyclohexyl-bonded phases compared to phases with linear-bonded alkyl groups. [Pg.59]

The sample diluent affects the solute dispersion. If we consider the effects of three different diluents (hexane, chloroform, and acetone) on the chromatographic behavior of a TG mixture on RP columns using, for example, acetonitrile and ethanol as the mobile phase, we can see that the TGs dissolved in hexane provided only a minute chromatographic trace, whereas dissolution in chloroform yielded excellent detection and resolution. These results can best be explained by invoking the solvophobic theory of Horvath and Melander (85). [Pg.211]

The cavity model of solvation provides the basis for a number of additional models used to explain retention in reversed-phase chromatography. The main approaches are represented by solvophobic theory [282-286] and lattice theories based on statistical thermodynamics [287-291]. To a lesser extent classical thermodynamics combining partition and displacement models [292] and the phenomenological model of solvent effects [293] have also been used. Compared with the solvation parameter model all these models are mathematically complex, and often require the input of system variables that are either unknown or difficult to calculate, particularly for polar compounds. For this reason, and because of a failure to provide a simple conceptual picture of the retention process in familiar chromatographic terms, these models have largely remained the province of the physical chemist. [Pg.312]


See other pages where Chromatographic theory solvophobic is mentioned: [Pg.531]    [Pg.283]    [Pg.79]    [Pg.124]    [Pg.275]    [Pg.285]    [Pg.341]    [Pg.310]    [Pg.484]    [Pg.78]    [Pg.80]    [Pg.87]    [Pg.1309]    [Pg.315]   
See also in sourсe #XX -- [ Pg.129 ]




SEARCH



Chromatographic theory

Solvophobic

Solvophobic theory

Solvophobicity

© 2024 chempedia.info