Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorine Diaphragm cells

In 1988 diaphragm cells accounted for 76% of all U.S. chlorine production, mercury cells for 17%, membrane cells for 5%, and all other production methods for 2%. Corresponding statistics for Canadian production are diaphragm cells, 81% mercury cells, 15% and membrane cells, 4% (5). for a number of reasons, including concerns over mercury pollution, recent trends are away from mercury cell production toward the more environmentally acceptable membrane cells, which also produce higher quality product and have favorable economics. [Pg.478]

Equation 16 is the correct material balance expression for calculating the chlorine efficiency of diaphragm cells. Whereas many approximate versions are used (8), the one closest to equation 16 is the "six equation" ... [Pg.483]

The toxicological problems associated with asbestos have been widely pubHshed and asbestos has been banned from most uses by the EPA. However, modem diaphragm cell chlorine plants have not had difficulty meeting the required exposure limits for asbestos fibers, and, as of 1990, the chlorine industry had an exemption allowing the continued use of asbestos as a diaphragm material. [Pg.489]

In the United States, 76% of the chlorine produced is from diaphragm cells. Production is equally divided between bipolar and monopolar electroly2ers. [Pg.489]

E. H. Cook and M. P. Grotheer, Energy S avingDevelopments for Diaphragm Cells and Caustic Evaporators, 23rd Chlorine Plant Manager s Seminar, New Orleans, The Chlorine Institute, Inc., Feb. 6, 1980. [Pg.520]

Diaphrag m Cell Technology. Diaphragm cells feature a porous diaphragm that separates anode and cathode compartments of the cell. Diaphragms should provide resistance to Hquid flow, requite minimum space between anode and cathode, produce minimum electrical resistance, and be durable. At the anode, which is generally a DSA, chloride ions are oxidized to chlorine (see eq. 1) and at the cathode, which is usually a woven steel wine mesh, water is reduced to hydrogen. [Pg.75]

FIGURE 14.17 A diaphragm cell tor the electrolytic production of sodium hydroxide from brine (aqueous sodium chloride solution), represented by the blue color. The diaphragm (gold color) prevents the chlorine produced at the titanium anodes from mixing with the hydrogen and the sodium hydroxide formed at the steel cathodes. The liquid (cell liquor) is drawn off and the water is partly evaporated. The unconverted sodium chloride crystallizes, leaving the sodium hydroxide dissolved in the cell liquor. [Pg.711]

This yields a solution of highly pure alkali (free of chloride ions), which can be used in the manufacture of synthetic fibers. The mercury, which has been stripped of sodium, is returned to the electrolyzer. The cost of chlorine is higher in the mercurycell than in the diaphragm-cell process. In addition, the mercury-cell process is ecologically dangerous, owing to the possible escape of mercury into the environment hence, it has increasingly been discontinued in all countries. [Pg.322]

The diaphragm cell consists of multiple electrolytic cells having the anode plates and cathodes mounted vertically and parallel to each other. The cathodes, often flat hollow perforated steel structures that are covered with asbestos fibers, serve as the diaphragm that prevents the mixing of hydrogen and chlorine and back diffusion of hydroxide (OH) ions from the cathode to the anode. Brine fed into the cell is decomposed to approximately half of its original concentration to produce chlorine gas at the anode and hydrogen and sodium hydroxide at the cathode. [Pg.924]

The wastewater generated in the membrane cell and other process wastewaters in the cell are generally treated by neutralization.28 Other pollutants similar to those in mercury and diaphragm cells are treated in the same process stated above. Ion exchange and xanthate precipitation methods can be applied in this process to remove the metal pollutants, while incineration can be applied to eliminate some of the hydrocarbons. The use of modified diaphragms that resist corrosion and degradation will help in reducing the amount of lead, asbestos, and chlorinated hydrocarbon in the wastewater stream from the chlor-alkali industry.28... [Pg.926]

If mercury shutdowns were to occur without replacement then Europe would be forced into importing chlorine derivatives such as EDC to compensate. The future of asbestos in diaphragm cells is also an issue, but with a much lower profile in Europe this has attracted less attention apart from in France. In the USA there are pressures on the industry too, which could be more acute depending on who occupies the White... [Pg.17]

For over a hundred years the chlor-alkali industry has used the mercury cell as one of the three main technologies for the production of chlorine and caustic soda. For historical reasons, this process came to dominate the European industry - while in the United States the asbestos diaphragm cell took the premier position. Over the last two decades developments in membrane cells have brought these to the forefront, and membrane cells of one kind or another now represent the technology of choice worldwide. [Pg.33]

Applying this information to a typical diaphragm-cell tail gas, Fig. 7.4 shows the logarithm of the amount of unrecovered chlorine versus the relative membrane area required. Recovery of chlorine is not far from a first-order process. As chlorine selectively passes through the membrane, the partial pressures of the impurities increase in the remaining gas. This causes their rates of permeation to increase. The membrane area required for permeation of, say, 30% of the nitrogen is less than twice that required for 15%. [Pg.110]


See other pages where Chlorine Diaphragm cells is mentioned: [Pg.364]    [Pg.483]    [Pg.486]    [Pg.488]    [Pg.491]    [Pg.493]    [Pg.496]    [Pg.180]    [Pg.100]    [Pg.74]    [Pg.75]    [Pg.76]    [Pg.82]    [Pg.471]    [Pg.498]    [Pg.60]    [Pg.61]    [Pg.267]    [Pg.267]    [Pg.252]    [Pg.798]    [Pg.229]    [Pg.278]    [Pg.322]    [Pg.729]    [Pg.730]    [Pg.921]    [Pg.924]    [Pg.925]    [Pg.925]    [Pg.926]    [Pg.52]    [Pg.87]    [Pg.303]    [Pg.179]    [Pg.181]    [Pg.185]    [Pg.185]   
See also in sourсe #XX -- [ Pg.178 , Pg.179 , Pg.188 ]




SEARCH



Diaphragm cells

© 2024 chempedia.info