Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloride removal advantages

Similarly, chloride removal can stop corrosion across the whole structure and has the advantage that, like a patch repair, it is a one off treatment. A generator can be brought in for the duration of the treatment so mains power is not essential. There is no long-term maintenance need but the system does treat the whole structure. [Pg.220]

When these benzoyl compounds separate in the course of the Schotten-Baumann reaction, they frequently occlude traces of unchanged benzoyl chloride, which thus escapes hydrolysis by the alkali it is advantageous there fore to recrystallise the benzoyl compounds whenever possible from ethanol or methylated spirit, since these solvents will esterify the unchanged chloride and so remove the latter from the recrystallised material. [Pg.244]

The precipitation of the barium sulphate must be performed with care, otherwise high results are obtained owing to occlusion of barium chloride in the barium sulphate. This is avoided by the following method, which has the further advantage that the tedious initial removal of the excess of nitric acid by evaporation is unnecessary. [Pg.423]

This is more convenient than the conventional calcium chloride guard tube and possesses the advantage of cheapness and lienee can easily be renewed for each experiment. -it is, of course, removed during distillations. [Pg.361]

In appHcations as hard surface cleaners of stainless steel boilers and process equipment, glycoHc acid and formic acid mixtures are particularly advantageous because of effective removal of operational and preoperational deposits, absence of chlorides, low corrosion, freedom from organic Hon precipitations, economy, and volatile decomposition products. Ammoniated glycoHc acid Hi mixture with citric acid shows exceUent dissolution of the oxides and salts and the corrosion rates are low. [Pg.516]

The desilverized alloy now contains bismuth as well as lead and ziac. To remove the lead and ziac, advantage is taken of the fact that ziac and lead chlorides are formed before bismuth chloride [7787-60-2J, BiCl, when the alloy is treated at 500°C with chlorine gas. Ziac chloride [7646-85-7] ZnCl, forms first, and after its removal lead chloride [7758-95-4], PbCl2, forms preferentially. This process is continued until the desired level of lead removal has been reached. The bismuth is given a final oxidation with air and caustic soda the refined product has a purity of 99.999%. [Pg.124]

Another method of fractional crystallization, in which advantage is taken of different ciystallization rates, is sometimes used. Thus, a solution saturated with borax and potassium chloride will, in the absence of borax seed ciystals, precipitate only potassium chloride on rapid coohng. The borax remains behind as a supersaturated solution, and the potassium chloride crystals can be removed before the slower borax crystalhzation starts. [Pg.1655]

The ionic liquid process has a number of advantages over traditional cationic polymerization processes such as the Cosden process, which employs a liquid-phase aluminium(III) chloride catalyst to polymerize butene feedstocks [30]. The separation and removal of the product from the ionic liquid phase as the reaction proceeds allows the polymer to be obtained simply and in a highly pure state. Indeed, the polymer contains so little of the ionic liquid that an aqueous wash step can be dispensed with. This separation also means that further reaction (e.g., isomerization) of the polymer s unsaturated ot-terminus is minimized. In addition to the ease of isolation of the desired product, the ionic liquid is not destroyed by any aqueous washing procedure and so can be reused in subsequent polymerization reactions, resulting in a reduction of operating costs. The ionic liquid technology does not require massive capital investment and is reported to be easily retrofitted to existing Cosden process plants. [Pg.322]

The solubility of the precipitates encountered in quantitative analysis increases with rise of temperature. With some substances the influence of temperature is small, but with others it is quite appreciable. Thus the solubility of silver chloride at 10 and 100 °C is 1.72 and 21.1mgL 1 respectively, whilst that of barium sulphate at these two temperatures is 2.2 and 3.9 mg L 1 respectively. In many instances, the common ion effect reduces the solubility to so.small a value that the temperature effect, which is otherwise appreciable, becomes very small. Wherever possible it is advantageous to filter while the solution is hot the rate of filtration is increased, as is also the solubility of foreign substances, thus rendering their removal from the precipitate more complete. The double phosphates of ammonium with magnesium, manganese or zinc, as well as lead sulphate and silver chloride, are usually filtered at the laboratory temperature to avoid solubility losses. [Pg.30]

This is a problem that has been reported by several researchers in other cya-nation methods on heteroaromatic halides. (Hetero)aryl chlorides have also been tackled via in situ halogen exchange to (hetero)aryl bromides followed by sequential cyanation (Scheme 71). For this microwave-assisted process an equimolar amount of NiBr2 and a two-fold excess of NaCN were used. The only heteroaromatic chloride tested was 2-chloropyridine. Although the procedures described involve the use of significant amounts of nickel salts, a clear advantage is that the reactions can be performed in air. Moreover, the cyanat-ing reagents are easily removed since they are water soluble. [Pg.193]


See other pages where Chloride removal advantages is mentioned: [Pg.514]    [Pg.140]    [Pg.221]    [Pg.257]    [Pg.3716]    [Pg.196]    [Pg.225]    [Pg.226]    [Pg.190]    [Pg.70]    [Pg.96]    [Pg.173]    [Pg.514]    [Pg.552]    [Pg.829]    [Pg.130]    [Pg.280]    [Pg.459]    [Pg.417]    [Pg.34]    [Pg.196]    [Pg.483]    [Pg.76]    [Pg.329]    [Pg.1665]    [Pg.17]    [Pg.55]    [Pg.622]    [Pg.263]    [Pg.6]    [Pg.8]    [Pg.109]    [Pg.694]    [Pg.987]    [Pg.97]    [Pg.228]    [Pg.167]    [Pg.292]    [Pg.68]    [Pg.28]   
See also in sourсe #XX -- [ Pg.634 ]




SEARCH



Chloride removal

© 2024 chempedia.info