Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chirality chiral oxidation catalysts

In principle, oxidative kinetic resolution of racemic alcohols can be achieved by using chiral oxidation catalysts such as TEMPO derivatives or dioxiranes. The selectivity achieved by use of these methods is, however, less than that observed in acylation reactions (Section 12.1). [Pg.345]

ZEOLITE ENCAPSULATED CHIRAL OXIDATION CATALYSTS The issue of encapsulation of chiral complexes in zeolites and the retention of their... [Pg.233]

We will show that metal coordination, both in mono- and dinucleating ligand systems can enforce chiral cleft formation. A sununary of approaches towards 02-binding and activation, catalytic oxygenations and self-assembly of dinuclear and chiral oxidation catalysts is presented. [Pg.172]

Interestingly, the scope of the reaction using this catalyst can be extended to oxidative kinetic resolution of secondary alcohols by using (-)-sparteine as a base (Table 10.2) [25]. The best enantiomeric excess of the alcohol was obtained when a chiral enantiopure base and an achiral catalyst were used. The use of chiral enantiopure catalyst bearing ligand 17 led to low enantioselectivity. [Pg.241]

Finally, with the aim of discovering novel chiral oxomolybdenum catalysts able to perform enantioselective alkene epoxidations, Kuhn et al. have reported the exploration of the catalytic behaviour of a series of dioxomolybdenum(VI) complexes with chiral cw-8-phenylthiomenthol ligands derived from ( + )-pulegone. Therefore, the epoxidation of c -p-methylstyrene using t-butyl-hydroperoxide as the oxidant and performed in the presence of ( + )-(2i ,5i )-2-[1-methyl-l-(phenylthio)ethyl]-5-methylcyclohexanone oxime as the ligand, did not produce, however, a significant optical induction in these conditions. [Pg.326]

A number of additional metal-catalyzed epoxidations have been reported in the past year. Platinum is a rarely used catalyst in oxidation reactions. The use of chiral Pt-catalyst 2 in the epoxidation of terminal alkenes provides the epoxide products in moderate yield and enantiomeric excess <06JA14006>. The chiral hydroxamide 3 is used with a Mo catalyst to provide the epoxide product in excellent yields and moderate enantioselectivity <06AG(I)5849>. A bis-titanium catalyst, 4, has also been used to epoxidize the usual set of alkenes with H202 as the oxidant <06AG(I)3478>. [Pg.71]

The asymmetric synthesis of allenes via enantioselective hydrogenation of ketones with ruthenium(II) catalyst was reported by Malacria and co-workers (Scheme 4.11) [15, 16]. The ketone 46 was hydrogenated in the presence of iPrOH, KOH and 5 mol% of a chiral ruthenium catalyst, prepared from [(p-cymene) RuC12]2 and (S,S)-TsDPEN (2 equiv./Ru), to afford 47 in 75% yield with 95% ee. The alcohol 47 was converted into the corresponding chiral allene 48 (>95% ee) by the reaction of the corresponding mesylate with MeCu(CN)MgBr. A phosphine oxide derivative of the allenediyne 48 was proved to be a substrate for a cobalt-mediated [2 + 2+ 2] cycloaddition. [Pg.147]

The first asymmetric procedure consists of the addition of R2Zn to a mixture of aldehyde and enone in the presence of the chiral copper catalyst (Scheme 7.14) [38, 52]. For instance, the tandem addition of Me2Zn and propanal to 2-cyclohexenone in the presence of 1.2 mol% chiral catalyst (S, R, R)-1S gave, after oxidation of the alcohol 51, the diketone 52 in 81% yield and with an ee of 97%. The formation of erythro and threo isomers is due to poor stereocontrol in the aldol step. A variety of trans-2,3-disubstituted cyclohexanones are obtained in this regioselective and enantioselective three-component organozinc reagent coupling. [Pg.243]

There are no reports of chiral complex catalysts that could catalyze the aerobic oxidative coupling of 2-naphthol at a reasonable reaction rate with high enantioselectivity. The reactions mentioned above are accomplished in 24 h or in 7-10 days. These drawbacks should be overcome in the near future. [Pg.55]

Amine A-oxides, possessing the property of Lewis basicity, have also been exploited in an enantioselective allylation. Maikov and Kocovsky prepared a series of chiral A-oxide catalysts and found, that ligands 23 and 25 afforded good yield and stereoselectivity (Scheme 17) [49-51]. [Pg.358]

HayasM et al. achieved high catalytic activity by using axially chiral iV-oxide catalyst 27. As compared to other organic catalysts, the reaction proceeded much faster, and high enantioselectivities were obtained with 0.01-0.1 mol% catalyst loading [53-55]. In 2005, Hoveyda and Snapper used a novel proline-based ahphatic A-oxide 28 for an asymmetric allylation (Scheme 19) [56],... [Pg.359]

Muller has explored enantioselective C-H insertion using optically active rhodium complexes, NsN=IPh as the oxidant, and indane 7 as a test substrate (Scheme 17.8) [35]. Chiral rhodium catalysts have been described by several groups and enjoy extensive application for asymmetric reactions with diazoalkanes ]46—48]. In C-H amination experiments, Pirrung s binaphthyl phosphate-derived rhodium system was found to afford the highest enantiomeric excess (31%) of the product sulfonamide 8 (20equiv indane 7, 71% yield). [Pg.383]

Asymmetric C-H insertion using chiral rhodium catalysts has proven rather elusive (Scheme 17.30). Dimeric complexes derived from functionalized amino acids 90 and 91 efficiently promote oxidative cychzation of suifamate 88, but the resulting asymmetric induction is modest at best ( 50% ee with 90). Reactions conducted using Doyle s asymmetric carboxamide systems 92 and 93 give disappointing product yields ( 5-10%) and negligible enantiomeric excesses. In general, the electron-rich carboxamide rhodium dimers are poor catalysts for C-H amination. Low turnover numbers with these systems are ascribed to catalyst oxidation under the reaction conditions. [Pg.401]

However, there are numerous reported instances of stereocontrol by a site-control mechanism involving chiral metal catalysts. That is, Nozaki and coworkers first illustrated the asymmetric alternating copolymerization of cyclohexene oxide and CO2 employing a chiral zinc catalyst derived from an amino alcohol (Fig. 2a) [13-16]. This was soon followed by studies of Coates and coworkers utilizing an imine-oxazoline zinc catalyst (Fig. 2b) [17]. Both investigations provided isotactic poly(cyclohexene carbonate) (Fig. 3) with enantiomeric excess of approximately 70%. [Pg.7]

Because of the great synthetic utility, asymmetric versions of the epoxidation of allylic alcohols have been developed and will be discussed in the following. Two methods of asymmetric conduction of the reaction are known. The first one is the employment of chiral catalysts and the second possibility is the use of chiral oxidants, which will be presented separately. [Pg.394]

SCHEME 109. Enantioselective oxidation of benzyl d-bromophenyl sulfide by TBHP in the presence of chiral titanium catalysts... [Pg.484]

A solid-phase sulfur oxidation catalyst has been described in which the chiral ligand is structurally related to Schiff-base type compounds (see also below). A 72% ee was found using Ti(OPr-i)4, aqueous H2O2 and solid-supported hgand 91 . More recently, a heterogeneous catalytic system based on WO3, 30% H2O2 and cinchona alkaloids has been reported for the asymmetric oxidation of sulfides to sulfoxides and kinetic resolution of racemic sulfoxides. In this latter case 90% ee was obtained in the presence of 92 as chiral mediator. ... [Pg.1099]

The breakthrough came already in 1996, one year after Curd s prediction, when Yang and coworkers reported the C2-symmetric binaphthalene-derived ketone catalyst 6, with which ee values of up to 87% were achieved. A few months later, Shi and coworkers reported the fructose-derived ketone 7, which is to date still one of the best and most widely employed chiral ketone catalysts for the asymmetric epoxidation of nonactivated alkenes. Routinely, epoxide products with ee values of over 90% may be obtained for trans- and trisubstituted alkenes. Later on, a catalytic version of this oxygen-transfer reaction was developed by increasing the pH value of the buffer. The shortcoming of such fructose-based dioxirane precursors is that they are prone to undergo oxidative decomposition, which curtails their catalytic activity. [Pg.1146]


See other pages where Chirality chiral oxidation catalysts is mentioned: [Pg.207]    [Pg.26]    [Pg.224]    [Pg.243]    [Pg.994]    [Pg.85]    [Pg.181]    [Pg.487]    [Pg.90]    [Pg.324]    [Pg.281]    [Pg.36]    [Pg.417]    [Pg.137]    [Pg.702]    [Pg.77]    [Pg.221]    [Pg.19]    [Pg.146]    [Pg.66]    [Pg.45]    [Pg.282]    [Pg.388]    [Pg.474]    [Pg.477]    [Pg.1147]    [Pg.137]   
See also in sourсe #XX -- [ Pg.283 , Pg.284 ]




SEARCH



Chiral catalysts

Oxidation chiral

© 2024 chempedia.info