Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral phase transfer catalysis PTC

The epoxidation of enones using chiral phase transfer catalysis (PTC) is an emerging technology that does not use transition metal catalysts. Lygo and To described the use of anthracenylmethyl derivatives of a cinchona alkaloid that are capable of catalyzing the epoxidation of enones with remarkable levels of asymmetric control and a one pot method for oxidation of the aUyl alcohol directly into... [Pg.25]

Chiral phase-transfer catalysis (PTC) is a very interesting methodology that typically requires simple experimental operations, a mild reaction conditions and inexpensive and/or environmentally benign reagents, and which is amenable to large-scale preparations [15]. The possibihty of developing recoverable and recyclable chiral catalysts has attracted the interest of many groups. Indeed, the immobilization of chiral phase-transfer catalysts has provided the first demonstrations of the feasibility of this approach. [Pg.299]

Chiral ion pairs (B, Fig. 2.2) can be formed by deprotonation of the pronucleophile with a chiral Brpnsted base or employing an achiral base and a chiral phase-transfer catalyst. Chiral phase-transfer catalysis (PTC) [8] illustrates how ion pairing interactions can be used to carry out the enantioface discrimination in conjugate addition reactions. In both cases, the chiral cation is responsible for... [Pg.42]

Building upon these concepts, this chapter firstly gives an insight into the modes of action of a selection of non-covalent chiral organocatalysts, employing chiral Brpnsted acid catalysis, chiral Brpnsted base catalysis, and chiral phase-transfer catalysis (PTC). Further sections of this chapter describe two separate case studies that aim to compare and contrast selected covalent and non-covalent strategies for achieving two distinct processes, acyl transfer reactions and asymmetric pericyclic processes. [Pg.2912]

This synthesis, which was reported by a group of development chemists, represents a remarkably efficient application of asymmetric alkylation by chiral phase transfer catalysis (PTC) (see section 6.1.1). Reaction of indanone (77) and allylic halide (78) under PTC conditions in the presence of only a few per cent of chiral cinchonidine derivative... [Pg.219]

Figure 11.5. Representative example of the mechanistic pathway of phase transfer catalysis (PTC). (Z, Z — functional group M = metal Q = chiral catalyst R = alkyl or aryl reagent X = halogen). Figure 11.5. Representative example of the mechanistic pathway of phase transfer catalysis (PTC). (Z, Z — functional group M = metal Q = chiral catalyst R = alkyl or aryl reagent X = halogen).
In the Michael-addition, a nucleophile Nu is added to the / -position of an a,fi-unsaturated acceptor A (Scheme 4.1) [1], The active nucleophile Nu is usually generated by deprotonation of the precursor NuH. Addition of Nu to a prochiral acceptor A generates a center of chirality at the / -carbon atom of the acceptor A. Furthermore, the reaction of the intermediate enolate anion with the electrophile E+ may generate a second center of chirality at the a-carbon atom of the acceptor. This mechanistic scheme implies that enantioface-differentiation in the addition to the yfi-carbon atom of the acceptor can be achieved in two ways (i) deprotonation of NuH with a chiral base results in the chiral ion pair I which can be expected to add to the acceptor asymmetrically and (ii) phase-transfer catalysis (PTC) in which deprotonation of NuH is achieved in one phase with an achiral base and the anion... [Pg.45]

The asymmetric alkylation of glycine derivatives is one of the most simple methods by which to obtain optically active a-amino acids [31]. The enantioselective alkylation of glycine Schiff base 52 under phase-transfer catalysis (PTC) conditions and catalyzed by a quaternary cinchona alkaloid, as pioneered by O Donnell [32], allowed impressive degrees of enantioselection to be achieved using only a very simple procedure. Some examples of polymer-supported cinchona alkaloids are shown in Scheme 3.14. Polymer-supported chiral quaternary ammonium salts 48 have been easily prepared from crosslinked chloromethylated polystyrene (Merrifield resin) with an excess of cinchona alkaloid in refluxing toluene [33]. The use of these polymer-supported quaternary ammonium salts allowed high enantioselectivities (up to 90% ee) to be obtained. [Pg.82]

Iminic derivatives of (4R,55)-l,5-dimethyl-4-phenyhmidazolidin-2-one have been dia-stereoselectively alkylated with activated alkyl halides or electrophilic olefins either under phase transfer catalysis (PTC) conditions or in the presence of the phosphazene base BEMP at —20°C in the presence of lithium chloride (LiCl). Hydrolysis of the alkylated imino imides gave (5)-a-amino acids with recovery of the imidazolidinone chiral auxihary [18]. [Pg.151]

Enantioselective phase-transfer catalysis (PTC) has been extensively applied for the alkylation, epoxidation, conjugate addition and related process, with the use of chiral ammonium salts being the typical transfer agent [293]. However, the related aldol... [Pg.319]

Although the term phase-transfer catalysis was introduced in 1971 by Starks [104], this field has received particular attention in recent decades. The use of chiral ammonium salts as catalysts (Figure 44.11) has been recognized as an effective tool for organic synthesis and much time has been spent in both industrial and academic sectors, making possible the development of munerous highly enanti-oselective processes [105]. The appHcabUity of phase-transfer catalysis (PTC) has... [Pg.1371]

The oldest conceptualized organocatalytic mode of action is phase-transfer catalysis (PTC). It consists in the creation of a chiral environment thanks to a chiral cation salt, in the proximity of a deprotonated carbonyl (Scheme 11.2, eq 4). This transient chiral anion can react in an enantioselective addition to appropriate electrophiles and notably Michael acceptors. [Pg.320]

Moreover, an emerging area in the PTC sector deals with chiral phase-transfer catalysis mediated by phosphonium derivatives. This topic, which was mostly limited to quaternaiy ammonium salts, has been recently reviewed by Enders and Nguyen that described several examples of phosphonium salts as chiral phase transfer catalysts. ... [Pg.90]

In particular, it is not only the cinchona alkaloids that are suitable chiral sources for asymmetric organocatalysis [6], but also the corresponding ammonium salts. Indeed, the latter are particularly useful for chiral PTCs because (1) both pseudo enantiomers of the starting amines are inexpensive and available commercially (2) various quaternary ammonium salts can be easily prepared by the use of alkyl halides in a single step and (3) the olefin and hydroxyl functions are beneficial for further modification of the catalyst. In this chapter, the details of recent progress on asymmetric phase-transfer catalysis are described, with special focus on cinchona-derived ammonium salts, except for asymmetric alkylation in a-amino acid synthesis. [Pg.35]

Catalytic Michael additions of a-nitroesters 38 catalyzed by a BINOL (2,2 -dihydroxy-l,r-bi-naphthyl) complex were found to yield the addition products 39 as precursors for a-alkylated amino acids in good yields and with respectable enantioselectivities (8-80%) as shown in Scheme 9 [45]. Asymmetric PTC (phase transfer catalysis) mediated by TADDOL (40) as a chiral catalyst has been used to synthesize enantiomeri-cally enriched a-alkylated amino acids 41 (up to 82 % ee) [46], A similar strategy has been used to access a-amino acids in a stereoselective fashion [47], Using azlactones 42 as nucleophiles in the palladium catalyzed stereoselective allyla-tion addition, compounds 43 were obtained in high yields and almost enantiomerically pure (Scheme 9) [48]. The azlactones 43 can then be converted into the a-alkylated amino acids as shown in Scheme 4. [Pg.31]

The synthesis of the chiral copper catalyst is very easy to reproduce. The complex catalyses the asymmetric alkylation of enolates of a range of amino acids, thus allowing the synthesis of enantiomeric ally enriched a,a disubstituted amino acids with up to 92% ee. The procedure combines the synthetic simplicity of the Phase Transfer Catalyst (PTC) approach, with the advantages of catalysis by metal complexes. The chemistry is compatible with the use of methyl ester substrates, thus avoiding the use of iso-propyl or ferf-butyl esters which are needed for cinchona-alkaloid catalyzed reactions[4], where the steric bulk of the ester is important for efficient asymmetric induction. Another advantage compared with cinchona-alkaloid systems is that copper(II)(chsalen) catalyses the alkylation of substrates derived from a range of amino acids, not just glycine and alanine (Table 2.4). [Pg.26]

The use of ot,p-unsaturated aldehydes as Michael acceptors always represents a challenging situation because of the tendency of enals to undergo 1,2- rather than the desired 1,4- addition reaction. Moreover, working under phase-transfer catalysis conditions incorporates an additional element of difficulty, because of the propensity of enolizable enals to undergo self-condensation side reactions. For this reason, there are only a few examples reporting enantioselective Michael reactions with ot,p-unsaturated aldehydes as Michael acceptors under PTC conditions, both coming from the Maruoka research team and also both making use of chiral tV-spiro quaternary ammonium salts as catalysts. [Pg.212]

Phase-transfer catalysis is one of the most practical synthetic methodologies because of its operational simplicity and mild reaction conditions, which enable applications in industrial syntheses as a sustainable green chemical process. As reviewed in this chapter, diverse Cinchona alkaloid-derived quaternaiy ammonium salts have been developed via the modification of Cinchona alkaloids based on steric or electronic factors as highly efficient chiral PTC catalysts and successfully applied in various asymmetric organic reactions. Despite the successful development and application of these catalysts, some problems remain to be addressed. Although Cinchona alkaloids have unique structural features, resulting in the availability of four... [Pg.129]

One class of application that readily highlights the enormous potential of asymmetric phase-transfer catalysis is the stereoselective ot-alkylation of different carbanion nucleophiles, in particular enolates. Although these types of transformations are most important in organic chemistry, there are stiU only a limited number of stereoselective catalytic methods available and the use of chiral PTCs represents one of the most versatile strategies to achieve such transformations. One example of special interest is the asymmetric a-alkylation of glycine Schiffbase 374 (Scheme 85)... [Pg.87]

The paramount importance of Michael additions as versatile C-C bond forming transformations was discussed in some detail earlier in this volume. Thus, it is not surprising that, besides the use of chiral PTCs in asymmetric a-alkylation reactions, their use for stereoselective Michael additions is one of the most carefully investigated reactions in asymmetric phase-transfer catalysis (328, 329). Accordingly, the additional use of this methodology in asymmetric total synthesis has been reported on several occasions. [Pg.92]


See other pages where Chiral phase transfer catalysis PTC is mentioned: [Pg.315]    [Pg.821]    [Pg.727]    [Pg.35]    [Pg.3]    [Pg.16]    [Pg.469]    [Pg.270]    [Pg.292]    [Pg.300]    [Pg.157]    [Pg.267]    [Pg.393]    [Pg.211]    [Pg.138]    [Pg.390]    [Pg.727]    [Pg.36]    [Pg.55]    [Pg.107]    [Pg.132]    [Pg.149]    [Pg.2]    [Pg.123]    [Pg.188]    [Pg.135]    [Pg.148]    [Pg.197]    [Pg.216]   
See also in sourсe #XX -- [ Pg.25 ]




SEARCH



Chiral PTCs

Chiral phases

Chirality, transfer

Chirality/Chiral phases

PTC-124

Phases chirality

© 2024 chempedia.info