Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral molecules, nematic phases

Altliough in figure C2.2.2 they are sketched witli rodlike molecules, botli nematic and chiral nematic phases can also be fonned by discotic molecules. [Pg.2545]

As witli tlie nematic phase, a chiral version of tlie smectic C phase has been observed and is denoted SniC. In tliis phase, tlie director rotates around tlie cone generated by tlie tilt angle [9,32]. This phase is helielectric, i.e. tlie spontaneous polarization induced by dipolar ordering (transverse to tlie molecular long axis) rotates around a helix. However, if tlie helix is unwound by external forces such as surface interactions, or electric fields or by compensating tlie pitch in a mixture, so tliat it becomes infinite, tlie phase becomes ferroelectric. This is tlie basis of ferroelectric liquid crystal displays (section C2.2.4.4). If tliere is an alternation in polarization direction between layers tlie phase can be ferrielectric or antiferroelectric. A smectic A phase foniied by chiral molecules is sometimes denoted SiiiA, altliough, due to the untilted symmetry of tlie phase, it is not itself chiral. This notation is strictly incorrect because tlie asterisk should be used to indicate the chirality of tlie phase and not tliat of tlie constituent molecules. [Pg.2549]

Chira.lNema.tlc, If the molecules of a Hquid crystal are opticaHy active (chiral), then the nematic phase is not formed. Instead of the director being locaHy constant as is the case for nematics, the director rotates in heHcal fashion throughout the sample. This chiral nematic phase is shown in Figure 7, where it can be seen that within any plane perpendicular to the heHcal axis the order is nematic-like. In other words, as in a nematic there is only orientational order in chiral nematic Hquid crystals, and no positional order. Keep in mind, however, that there are no planes of any sort in a chiral nematic Hquid crystal, since the director rotates continuously about the heHcal axis. The pitch of the helix formed by the director, ie, the distance it takes for the... [Pg.192]

Chiral Smectic. In much the same way as a chiral compound forms the chiral nematic phase instead of the nematic phase, a compound with a chiral center forms a chiral smectic C phase rather than a smectic C phase. In a chiral smectic CHquid crystal, the angle the director is tilted away from the normal to the layers is constant, but the direction of the tilt rotates around the layer normal in going from one layer to the next. This is shown in Figure 10. The distance over which the director rotates completely around the layer normal is called the pitch, and can be as small as 250 nm and as large as desired. If the molecule contains a permanent dipole moment transverse to the long molecular axis, then the chiral smectic phase is ferroelectric. Therefore a device utilizing this phase can be intrinsically bistable, paving the way for important appHcations. [Pg.194]

If the molecules are chiral or if a chiral dopant is added to a discotic Hquid crystal, a chiral nematic discotic phase can form. The director configuration ia this phase is just like the director configuration ia the chiral nematic phase formed by elongated molecules (12). Recendy, discotic blue phases have been observed. [Pg.196]

The positional order of the molecules within the smectic layers disappears when the smectic B phase is heated to the smectic A phase. Likewise, the one-dimensional positional order of the smectic M phase is lost in the transition to the nematic phase. AH of the transitions given in this example are reversible upon heating and cooling they are therefore enantiotropic. When a given Hquid crystal phase can only be obtained by changing the temperature in one direction (ie, the mesophase occurs below the soHd to isotropic Hquid transition due to supercooling), then it is monotropic. An example of this is the smectic A phase of cholesteryl nonanoate [1182-66-7] (4), which occurs only if the chiral nematic phase is cooled (21). The transitions are aH reversible as long as crystals of the soHd phase do not form. [Pg.197]

Other more exotic types of calamitic liquid crystal molecules include those having chiral components. This molecular modification leads to the formation of chiral nematic phases in which the director adopts a natural helical twist which may range from sub-micron to macroscopic length scales. Chirality coupled with smectic ordering may also lead to the formation of ferroelectric phases [20]. [Pg.7]

The prime requirement for the formation of a thermotropic liquid crystal is an anisotropy in the molecular shape. It is to be expected, therefore, that disc-like molecules as well as rod-like molecules should exhibit liquid crystal behaviour. Indeed this possibility was appreciated many years ago by Vorlander [56] although it was not until relatively recently that the first examples of discotic liquid crystals were reported by Chandrasekhar et al. [57]. It is now recognised that discotic molecules can form a variety of columnar mesophases as well as nematic and chiral nematic phases [58]. [Pg.93]

The structures of phases such as the chiral nematic, the blue phases and the twist grain boundary phases are known to result from the presence of chiral interactions between the constituent molecules [3]. It should be possible, therefore, to explore the properties of such phases with computer simulations by introducing chirality into the pair potential and this can be achieved in two quite different ways. In one a point chiral interaction is added to the Gay-Berne potential in essentially the same manner as electrostatic interactions have been included (see Sect. 7). In the other, quite different approach a chiral molecule is created by linking together two or more Gay-Berne particles as in the formation of biaxial molecules (see Sect. 10). Here we shall consider the phases formed by chiral Gay-Berne systems produced using both strategies. [Pg.110]

Here, ry is the separation between the molecules resolved along the helix axis and is the angle between an appropriate molecular axis in the two chiral molecules. For this system the C axis closest to the symmetry axes of the constituent Gay-Berne molecules is used. In the chiral nematic phase G2(r ) is periodic with a periodicity equal to half the pitch of the helix. For this system, like that with a point chiral centre, the pitch of the helix is approximately twice the dimensions of the simulation box. This clearly shows the influence of the periodic boundary conditions on the structure of the phase formed [74]. As we would expect simulations using the atropisomer with the opposite helicity simply reverses the sense of the helix. [Pg.115]

The simplest mesophase is the nematic phase. It is very fluid and involves highly disordered molecules having only short-range positional order, but with the molecules preferentially aligned on average in a particular direction (the director). If the constituent compound is racemic then it is possible to form a phase from the enantiomerically pure compound which is a chiral nematic phase. [Pg.268]

When the mesogenic compounds are chiral (or when chiral molecules are added as dopants) chiral mesophases can be produced, characterized by helical ordering of the constituent molecules in the mesophase. The chiral nematic phase is also called cholesteric, taken from its first observation in a cholesteryl derivative more than one century ago. These chiral structures have reduced symmetry, which can lead to a variety of interesting physical properties such as thermocromism, ferroelectricity, and so on. [Pg.359]

Another mechanism of chiral amplification that extends over an even larger scale has been reported by Huck et al. [119] The molecule 12-(9 H-thioxantbene-9 -yli-dene-12H-benzo[a]xanthene (Fig. 11.6), which has no chiral center, nevertheless exists, like the helicenes, in two chiral forms defined by their enantiomeric configurations. Consistent with the discussion in Section 11.2.3, a small net handedness (ca. 0.7 %) could be induced in racemic solutions of this molecule by use of ultraviolet CPL. However, introducing 20 wt% of this molecule, which contained a 1.5% chiral excess of one roto-enantiomer, into a nematic phase of liquid crystals produced macroscopic (100 pm) regions of a chiral cholesteric liquid crystal phase. The... [Pg.192]

The cholesteric phase in hquid crystals is analogous to the nematic phase but it is formed by materials that contain a chiral centre, initially derivatives of cholesterol (5.3), hence the name cholesteric LCs. Since synthetic chiral molecules can also be used on their own or as dopants for nematic LCs, e.g. (5.4), chiral nematic is probably a more appropriate term for these materials. [Pg.312]

Cholesteric - the liquid crystal phase formed by molecules with a chiral centre (also called the chiral nematic phase). [Pg.387]

Another possibility to obtain cholesteric phases is well established for l-l.c. s. Nematic phases can be converted into cholesteric phases by the addition of chiral molecules, which must not necessarily have a mesogenic chemical constitution (induced cholesteric phases). With increasing amount of the chiral derivative an increasing helical twist is induced. This principle can also be applied to obtain cholesteric polymers 81 S3) in form of... [Pg.135]

Cholesteric liquid crystals Historically, the name is derived from cholesterol chiral molecules like the steroids show a certain form of the nematic phase, the cholesteric one. The rigid rods are oriented parallel within virtual layers in one preferred direction (director) the director changes from one single virtual layer to the next continuously, with a certain value creating a helix. The distance between two parallel oriented directors is called the pitch (ca 0.2 pm). [Pg.426]

In most cases, the addition of a rod-shaped molecule to a crown ether leads to the formation of a nematic phase. In the case of addition of a chiral unit, such as cholesterol, chiral nematic phases can be observed. Some molecules can also show smectic phases when the attached rod shaped unit is long and inflexible. [Pg.123]

Abstract It is well known that spontaneous deracemization or spontaneous chiral resolution occasionally occurs when racemic molecules are crystallized. However, it is not easy to believe such phenomenon will occur when forming liquid crystal phases. Spontaneous chiral domain formation is introduced, when molecules form particular liquid crystal phases. Such molecules possess no chiral carbon but may have axial chirality. However, the potential barrier between two chiral states is low enough to allow mutual transformation even at room temperature. Therefore the systems are essentially not racemic but nonchiral or achiral. First, enhanced chirality by doping chiral nematic liquid crystals with nonchiral molecules is described. Emphasis is made on ester molecules for their anomalous behavior. Second, spontaneous chiral resolution is discussed. Three examples with rod-, bent-, and diskshaped molecules are shown to give such phenomena. Particular attention will be paid to controlling enantiomeric excess (ee). Actually, almost 100% ee was obtained by applying some external chiral stimuli. This is very noteworthy in the sense that we can create chiral molecules (chiral field) without using any chiral species. [Pg.303]


See other pages where Chiral molecules, nematic phases is mentioned: [Pg.268]    [Pg.416]    [Pg.2543]    [Pg.2544]    [Pg.198]    [Pg.199]    [Pg.67]    [Pg.111]    [Pg.113]    [Pg.114]    [Pg.114]    [Pg.115]    [Pg.120]    [Pg.148]    [Pg.174]    [Pg.427]    [Pg.126]    [Pg.193]    [Pg.188]    [Pg.211]    [Pg.397]    [Pg.405]    [Pg.934]    [Pg.935]    [Pg.136]    [Pg.146]    [Pg.19]    [Pg.141]    [Pg.203]    [Pg.304]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Chiral molecules

Chiral molecules chirality

Chiral nematic phase

Chiral nematics

Chiral nematics chirality

Chiral phases

Chirality/Chiral phases

Phase molecules

Phase nematic

Phases chirality

Phases nematic phase

© 2024 chempedia.info