Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral molecular modeling

FIGURE 7 12 Chohc acid Its 11 chirality centers are those carbons at which stereochemistry is indicated in the structural drawing at the left The molecular model at the right more dearly shows the overall shape of the molecule... [Pg.307]

Wnte structural formulas or make molecular models for all the compounds that are tnchloro derivatives of cyclopropane (Don t forget to include stereoisomers ) Which are chiraL Which are achiral" ... [Pg.318]

Intramolecular hydrogen bonding is present in the chiral diastereomer of 225 5 tetra methylhexane 3 4 diol but absent in the meso diastereomer Construct molecular models of each and suggest a reason for the difference between the two... [Pg.664]

What are the R S configurations of the three chirality centers in D nbose" (A molecular model will be helpful here )... [Pg.1065]

The property of chirality is determined by overall molecular topology, and there are many molecules that are chiral even though they do not possess an asymmetrically substituted atom. The examples in Scheme 2.2 include allenes (entries 1 and 2) and spiranes (entries 7 and 8). Entries 3 and 4 are examples of separable chiral atropisomers in which the barrier to rotation results from steric restriction of rotation of the bond between the aiyl rings. The chirality of -cyclooctene and Z, -cyclooctadiene is also dependent on restricted rotation. Manipulation of a molecular model will illustrate that each of these molecules can be converted into its enantiomer by a rotational process by which the ring is turned inside-out. ... [Pg.82]

Verify, by making molecular models, that the bonds to sulfur are arranged in a trigonal pyramidal geometry in sulfoxides and in a tetrahedral geometry in sulfones. Is phenyl vinyl sulfoxide chiral What about phenyl vinyl sulfone ... [Pg.686]

The three water ligands located at meridional positions of the J ,J -DBFOX/Ph aqua complexes may be replaced by another molecule of DBFOX/Ph ligand if steric hindrance is negligible. Based on molecular model inspection, the hetero-chiral enantiomer S,S-DBFOX/Ph looks like a candidate to replace the water ligands to form the heterochiral meso-2 l complex J ,J -DBFOX/Ph-S,S-DBFOX/... [Pg.260]

Problem 9.2 I Identify the chirality centers in the following molecules. Build molecular models if i you need help. [Pg.294]

Problem 9.11 Assign R or 5 configuration to the chirality center in the following molecular model of the amino acid methionine (blue = N, yellow = S) ... [Pg.302]

Allenes are compounds with adjacent carbon-carbon double bonds. Many allenes are chiral, even though they don t contain chirality centers. Mycomycin, for example, a naturally occurring antibiotic isolated from the bacterium Nocardia acidophilus, is chiral and has = -130. Explain why mycomycin is chiral. Making a molecular model should be helpful. [Pg.330]

Fig. 11 (a) Schematic polymer structure of poly-7 OEt. Phenylene rings are omitted in order to simplify, (b) Molecular model of repeating structure of poly-7 OEt. Four chiral centres on each of two cyclobutane rings in both sides are enantiomeric to each other. [Pg.152]

For the carbonyl carbon Ij core level ionization, excellent quantitative agreement of the b parameters is found, both between the alternative calculations and between either calculation and experiment (see Section VLB.I). Given the spherical, therefore achiral, nature of the initial orbital in these calculations, any chirality exhibited in the angular distribution must stem from the final-state photoelectron scattering off the chiral molecular ion potential. Successful prediction of any non-zero chiral parameter is clearly then dependent on a reliable potential model describing the final state. At this level, there is nothing significant to choose between the potential models of the two methods. [Pg.288]

The molecular modelling approach, taking into account the pyruvate—cinchona alkaloid interaction and the steric constraints imposed by the adsorption on the platinum surface, leads to a reasonable explanation for the enantio-differentiation of this system. Although the prediction of the complex formed between the methyl pyruvate and the cinchona modifiers have been made for an ideal case (solvent effects and a quantum description of the interaction with the platinum surface atoms were not considered), this approach proved to be very helpful in the search of new modifiers. The search strategy, which included a systematic reduction of the cinchona alkaloid structure to the essential functional parts and validation of the steric constraints imposed to the interaction complex between modifier and methyl pyruvate by means of molecular modelling, indicated that simple chiral aminoalcohols should be promising substitutes for cinchona alkaloid modifiers. Using the Sharpless symmetric dihydroxylation as a key step, a series of enantiomerically pure 2-hydroxy-2-aryl-ethylamines... [Pg.57]

An attractive alternative to these novel aminoalcohol type modifiers is the use of 1-(1-naphthyl)ethylamine (NEA, Fig. 5) and derivatives thereof as chiral modifiers [45-47]. Trace quantities of (R)- or (S)-l-(l-naphthyl)ethylamine induce up to 82% ee in the hydrogenation of ethyl pyruvate over Pt/alumina. Note that naphthylethylamine is only a precursor of the actual modifier, which is formed in situ by reductive alkylation of NEA with the reactant ethyl pyruvate. This transformation (Fig. 5), which proceeds via imine formation and subsequent reduction of the C=N bond, is highly diastereoselective (d.e. >95%). Reductive alkylation of NEA with different aldehydes or ketones provides easy access to a variety of related modifiers [47]. The enantioselection occurring with the modifiers derived from NEA could be rationalized with the same strategy of molecular modelling as demonstrated for the Pt-cinchona system. [Pg.58]

Molecular modeling studies relative to both preinsertion intermediates and insertion states indicate that for all the metallocenes from 1 to 39 of Scheme 1.2 (independent of their structure and symmetry), when a substantial stereoselectivity is calculated for primary monomer insertion, this is mainly due to nonbonded energy interactions of the methyl group of the chirally coordinated monomer with the chirally oriented growing chain. [Pg.17]

The mechanisms of stereoselectivity which have been proposed for chain-end stereocontrolled polymerizations involving secondary monomer insertion also present a general pattern of similarity. In fact, molecular modeling studies suggest that for olefin polymerizations (both syndiospecific and isospecific, Section 4.1.2) as well as for styrene polymerization (syndiospecific, Section 4.2), the chirality of the growing chain would determine the chirality of a fluxional site, which in turn would discriminates between the two monomer enantiofaces. [Pg.62]

The stereoselectivity mechanisms for polymerizations of dienes present several peculiar aspects mainly related to the nature of the bond between the transition metal of the catalytic system and the growing chain, which is of allylic type rather than of o type, as for the monoalkene polymerizations. There is experimental evidence, also supported by molecular modeling studies, that a relevant role for chemoselectivity and stereoselectivity is also played by the chirality of the back-biting coordination to the metal of the double bond of the polydienyl chain closest to the coordinated allyl group. [Pg.62]

The earliest approach to explain tubule formation was developed by de Gen-nes.168 He pointed out that, in a bilayer membrane of chiral molecules in the Lp/ phase, symmetry allows the material to have a net electric dipole moment in the bilayer plane, like a chiral smectic-C liquid crystal.169 In other words, the material is ferroelectric, with a spontaneous electrostatic polarization P per unit area in the bilayer plane, perpendicular to the axis of molecular tilt. (Note that this argument depends on the chirality of the molecules, but it does not depend on the chiral elastic properties of the membrane. For that reason, we discuss it in this section, rather than with the chiral elastic models in the following sections.)... [Pg.343]

This scenario for molecular packing leading to biased chiral symmetrybreaking is quite speculative. However, it makes an important point for molecular modeling of lipid membranes The unusual feature of diacetylenic lipids does not have to be associated with the stereocenter of the molecules but rather may be a broken symmetry in the packing of the kinks in the acyl chains. This speculation needs to be investigated by detailed molecular modeling calculations. [Pg.363]

These results allowed the proposal, at the beginning of the 1980s, of a different molecular model for cholesteric induction 65,66 This model is sketched in Figure 7.15 in the case when both nematic host and chiral guest have a biaryl structure. Nematic molecules exist in chiral enantiomorphic conformations of opposite helicity in fast interconversion. The chiral dopant has a well-defined helicity (M in Figure 7.15) and stabilizes the homochiral conformation of the solvent In this way, the M chirality is transferred from the dopant to the near molecule of the solvent and from this to the next near one and so on. This... [Pg.444]


See other pages where Chiral molecular modeling is mentioned: [Pg.8]    [Pg.87]    [Pg.81]    [Pg.8]    [Pg.87]    [Pg.81]    [Pg.1047]    [Pg.325]    [Pg.84]    [Pg.90]    [Pg.1047]    [Pg.123]    [Pg.301]    [Pg.1291]    [Pg.1301]    [Pg.287]    [Pg.198]    [Pg.601]    [Pg.136]    [Pg.615]    [Pg.79]    [Pg.118]    [Pg.523]    [Pg.342]    [Pg.130]    [Pg.293]    [Pg.349]    [Pg.352]    [Pg.443]   
See also in sourсe #XX -- [ Pg.334 ]




SEARCH



Chiral model

Chirality modeling

Chirality molecular

© 2024 chempedia.info