Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization stereocontrol

Keywords Metal catalysts Poly(glycolide) Poly(lactide) Poly(lactide-co-glycolide) Ring-opening polymerization Stereocontrol... [Pg.220]

M-M bonded compounds, 4, 131 in monoolefin polymerization, 4, 141 Europium(II) complexes, alkyl compounds, 4, 4 Europocenes, characteristics, 4, 27 Evaporation rates, in metal vapor synthesis, 1, 225 Ewen s symmetry rules, for olefin polymerization stereocontrol, 4, 1023 Exchange reactions... [Pg.104]

The focus of this section is the polymerization stereocontrol made possible by ligand modification of metallocenes. Thus, propylene will be the monomer of focus since the stereochemistry of polypropylene is the best tmderstood of any polyolefin," if not of any synthetic polymer ever studied. The observed correlation between a catalyst s stmcture/symme-try and a catalyst s stereoselectivity is often referred to as Ewen s Symmetry Rules.Metallocenes have been manipulated to a remarkable degree to direct the enantiomorphic site control mechanism for polymerization stereoselectivity. ... [Pg.685]

The use of single-site initiators for the polymerization of acrylates is attractive, since steric protection of the metal center should eliminate the unwanted side reactions described above, allowing living polymerization systems to be developed. Further, stereocontrol may be achievable by appropriate ligand selection. [Pg.24]

Tetradentate N,0-donor ligands have also been investigated. The yttrium complex (—)-(313) does not effect stereocontrol over the ROP of rac- or meso-LA, in contrast to related A1 initiators (262) and (263).803 Polymerization is also slower than for most lanthanide initiators with 100 equivalents meso-LA requiring 14 h at 70 °C to attain near-quantitative conversion (97%). [Pg.49]

Reaction of the bis-chelate complex 149 and various bis(arylalkyl)barium complexes generates heteroleptic barium complexes with one chelate and one reactive arylalkyl ligand 164. The homoleptic and heteroleptic barium complexes both induce living polymerization of styrene to atactic polystyrene in cyclohexane solution. The fact that no stereocontrol is observed during polymerization despite the presence of the chiral carbanionic ligands is... [Pg.136]

With MAO activation, Zr- and Hf-FI catalysts 1 and 3 exhibit fairly high reactivity toward propylene and produce propylene oligomers [64, 65], Conversely, the corresponding Ti-FI catalyst/MAO 2 forms semicrystalline PP (1 °C polymerization), which displays a peak melting temperature of 97 °C, indicative of the formation of a stereoregular polymer. To our surprise, microstructural analysis by 13C NMR indicates that the resultant polymer is syndiotactic (rr 19%), and that a chain-end control mechanism is responsible for the observed stereocontrol, regardless of the C2 symmetric catalyst ([28] for the first report on syndiospecific propylene... [Pg.24]

Section 4 will deal with catalytic systems whose stereospecificity is controlled principally by the chirality of the closest tertiary carbon atom of the growing chain (chain-end stereocontrol). In Section 4.1 possible mechanisms for chain-end controlled isospecific and syndiospecific propene polymerizations will be reviewed. In Section 4.2 informations relative to the mechanism of chain-end controlled syndiospecific polymerization of styrene and substituted styrenes will be reviewed. In Section 4.3 chain-end controlled mechanisms for the isospecific and syndiospecific cis-1,4 and 1,2 polymerizations of dienes will be presented. [Pg.8]

The chain-end stereocontrol for olefin polymerizations leads generally to lower stereoselectivities (differences in activation energy for insertion of the two enantiofaces generally lower than 2 kcal/mol) than the chiral site stereo-control.18131132 For this reason, the corresponding catalytic systems have not reached industrial relevance for propene homopolymerization. However, some of them are widely used for propene copolymerization with ethene. [Pg.48]

The mechanisms of stereoselectivity which have been proposed for chain-end stereocontrolled polymerizations involving secondary monomer insertion also present a general pattern of similarity. In fact, molecular modeling studies suggest that for olefin polymerizations (both syndiospecific and isospecific, Section 4.1.2) as well as for styrene polymerization (syndiospecific, Section 4.2), the chirality of the growing chain would determine the chirality of a fluxional site, which in turn would discriminates between the two monomer enantiofaces. [Pg.62]

Inspired by the ability of cationic ansa-zirconocene complexes to effect stereocontrolled alkene polymerization reactions, Jordan has recently reported the stereoselective insertion of simple alkenes into both the (ebi)Zr(r 2 -pyrid-2 -yl) and (ebthi) Z r (r 2 -pyr id - 2 -yl) systems [113]. As shown in Scheme 6.36, treatment of rac-(ebi)ZrMe2 114 with nBu3NH+BPh4 in the presence of 2-picoline affords the (ebi)Zr(q2-pyrid-2-yl) complex 115 (the derived B(C6F5) derivatives may also be prepared and are in fact reported to be more convenient to use). [Pg.217]

In order to avoid polymerization and to achieve better stereocontrol by quasi-intramolecular addition, a carbanion-stabilizing group and a complexing substituent for capturing alkyllithium/(—)-sparteine in the substrate are useful. This carbolithiation protocol was realized with great success by Marek, Normant and coworkers (equation 125) Addition of n-BuLi/(—)-sparteine (11) onto the lithium alcoholate derived from ( )-cinnamyl alcohol (457) in cumene at 0°C afforded the addition product with 82% yield and 80% ee. [Pg.1150]

The mechanical properties of PLA rely on the stereochemistry of insertion of the lactide monomer into the PLA chain, and the process can be controlled by the catalyst used. Therefore, PLAs with desired microstructures (isotactic, heterotactic, and S3mdiotactic) can be derived from the rac- and W50-Iactide depending on the stereoselectivity of the metal catalysts in the course of the polymerization (Scheme 15) [66]. Fundamentally, two different polymerization mechanisms can be distinguished (1) chain-end control (depending on stereochemistry of the monomer), and (2) enantiomorphic site control (depending on chirality of the catalyst). In reality, stereocontrolled lactide polymerization can be achieved with a catalyst containing sterically encumbered active sites however, both chain-end and site control mechanisms may contribute to the overall stereocontrol [154]. Homonuclear decoupled NMR analysis is considered to be the most conclusive characterization technique to identify the PLA tacticity [155]. Homonuclear... [Pg.265]

Spassky and coworkers discovered a remarkable stereocontrol of an enantiomerically pure A1 complex (7 )-161a for the ROP of rac-lactide resulting in a tapered stereoblock PLA microstructure with high melting point =187 °C) (Fig. 26) [160]. Structurally analogous, racemic salen-Al complex 162 resulted in highly isotactic PLA [161]. Feijen s enantiopure chiral complex (RJ )-163 (Fig. 26) exhibited an excellent reverse stereocontrol by preferential polymerization of L-lactide over D-lactide monomer (Kss/Krr = 14) that resulted in PLA with... [Pg.267]

The enantiomorphic site control model attributes stereocontrol in isoselective polymerization to the initiator active site with no influence of the structure of the propagating chain end. The mechanism is supported by several observations ... [Pg.650]

The polymer chain end control model is supported by the observation that highly syndiotactic polypropene is obtained only at low temperatures (about —78°C). Syndiotacticity is significantly decreased by raising the temperature to —40°C [Boor, 1979]. The polymer is atactic when polymerization is carried out above 0°C. 13C NMR analysis of the stereoerrors and stereochemical sequence distributions (Table 8-3 and Sec. 8-16) also support the polymer chain end control model [Zambelli et al., 2001], Analysis of propene-ethylene copolymers of low ethylene content produced by vanadium initiators indicates that a syndiotactic block formed after an ethylene unit enters the polymer chain is just as likely to start with an S- placement as with an R-placement of the first propene unit in that block [Bovey et al., 1974 Zambelli et al., 1971, 1978, 1979]. Stereocontrol is not exerted by chiral sites as in isotactic placement, which favors only one type of placement (either S- or R-, depending on the chirality of the active site). Stereocontrol is exerted by the chain end. An ethylene terminal unit has no preference for either placement, since there are no differences in repulsive interactions. [Pg.654]

Molecular alignment in the monomer crystals is controlled by several intermolecular interactions, such as strong and weak hydrogen bonds, leading to the formation of various types of stereoregular polymers via a topochemical polymerization process. This approach to the stereocontrol of polymers differs from other conventional ways in the control of the propagating chain end using catalysts or additives in solution polymerization. [Pg.292]

To broaden our overall knowledge of process kinetics the first chapter of this volume deals with elementary reactions in radical and anionic polymerization it was written by G. V. Schulz, the first recipient of the H. Staudinger Award. It is followed by a discussion on monomer constitution and stereocontrol in radical polymerization by H. G. Elias et al. [Pg.10]

Monomer Constitution and Stereocontrol in Free Radical Polymerizations... [Pg.33]

Stereocontrol of free radical polymerization is influenced by monomer constitution, solventy and temperature. Most polymerizations seem to follow at least a Markov first-order one-way mechanism. Ratios of the four possible rate constants ki/iy ki/8, k8/i, and k8/8 can be calculated from the experimentally accessible concentrations of configurational triads and diads. With increasing temperature, more heterotactic triads are formed at a syndiotactic radical whereas the monomer addition at an isotactic radical favors isotactic and not heterotactic triads. Compensation effects exist for the differences of activation enthalpies and activation entropies for each of the six possible combinations of modes of addition. The compensation temperature is independent of the mode of addition whereas the compensation enthalpies are not. [Pg.33]

Most free radical polymerized polymers exhibit a preponderance of syndiotactic diads. The syndiotacticity normally increases with decreasing temperature. This phenomenon has lead some authors to conclude that the stereocontrol is governed by the bulkiness of the substituent. Implicit in this argument are the assumptions that only repulsive forces... [Pg.33]


See other pages where Polymerization stereocontrol is mentioned: [Pg.97]    [Pg.97]    [Pg.425]    [Pg.331]    [Pg.126]    [Pg.26]    [Pg.136]    [Pg.11]    [Pg.13]    [Pg.52]    [Pg.54]    [Pg.55]    [Pg.61]    [Pg.500]    [Pg.557]    [Pg.563]    [Pg.161]    [Pg.267]    [Pg.75]    [Pg.220]    [Pg.226]    [Pg.278]    [Pg.652]    [Pg.322]    [Pg.713]    [Pg.714]   
See also in sourсe #XX -- [ Pg.581 , Pg.729 , Pg.757 ]




SEARCH



Chiral site stereocontrol, chirality polymerization

Chiral site stereocontrol, chirality polymerization mechanisms

Stereocontrol

Stereocontrol in Polymerization

Stereocontrolled

© 2024 chempedia.info