Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral lithium amides imides

The reactivity of lithium enolates has been explored in a theoretical study of the isomers of C2H30Li, such as the lithium enolate, the acyl lithium, and the a-lithio enol. Imides containing a chiral 2-oxazolidine have been employed for enantioselective protonation of prochiral enolates.A degree of kinetic control of the product E/Z-enolate ratio has been reported for the lithiation of 3,3-diphenylpropiomesitylene, using lithium amides/alkyls. " °... [Pg.26]

The enolates of other carbonyl compounds can be used in mixed aldol reactions. Extensive use has been made of the enolates of esters, thiol esters, amides, and imides, including several that serve as chiral auxiliaries. The methods for formation of these enolates are similar to those for ketones. Lithium, boron, titanium, and tin derivatives have all been widely used. The silyl ethers of ester enolates, which are called silyl ketene acetals, show reactivity that is analogous to silyl enol ethers and are covalent equivalents of ester enolates. The silyl thioketene acetal derivatives of thiol esters are also useful. The reactions of these enolate equivalents are discussed in Section 2.1.4. [Pg.78]

Imidate esters can also be generated by reaction of imidoyl chlorides and allylic alcohols. The lithium anions of these imidates, prepared using lithium diethylamide, rearrange at around 0°C. When a chiral amine is used, this reaction can give rise to enantioselective formation of 7, 8-unsaturated amides. Good results were obtained with a chiral binaphthylamine.265 The methoxy substituent is believed to play a role as a Li+ ligand in the reactive enolate. [Pg.578]

Our research group developed catalytic enantioselective protonations of preformed enolates of simple ketones with (S,S)-imide 23 or chiral imides 25 and 26 based on a similar concept [29]. For catalytic protonation of a lithium eno-late of 2-methylcyclohexanone, chiral imide 26, which possesses a chiral amide moiety, was superior to (S.S)-imide 23 as a chiral acid and the enolate was pro-tonated with up to 82% ee. [Pg.144]

The imide 6 is an excellent proton source for returning lithium enolates to chiral ketones in ether. The ee value is also greatly influenced by an additive, and LiBr appears to have the best effect. Deracemization of amides by protonation of their enolates in the presence of a chiral l-aryl-l,2,3,4-tetrahydroisoquinoline (catalytic amount) and that of the potassium enolates of A-(2-hydroxypinan-3-ylidene)-a-amino esters have remarkable efficiencies. [Pg.79]

Chiral amides (222) and (223) and imides (224) and (225) have also been studied as reagents for asymmetric aldol reactions. These reagents show excellent diastereofacial preferences as their boron and zirconium enolates, but generally show poor selectivity as their lithium enolates. The reader is referred to other chapters in this volume for a discussion of these and related reagents. [Pg.231]

In 1982, Evans reported that the alkylation of oxazolidinone imides appeared to be superior to either oxazolines or prolinol amides from a practical standpoint, since they are significantly easier to cleave [83]. As shown in Scheme 3.17, enolate formation is at least 99% stereoselective for the Z(0)-enolate, which is chelated to the oxazolidinone carbonyl oxygen as shown. From this intermediate, approach of the electrophile is favored from the Si face to give the monoalkylated acyl oxazolidinone as shown. Table 3.6 lists several examples of this process. As can be seen from the last entry in the table, alkylation with unactivated alkyl halides is less efficient, and this low nucleophilicity is the primary weakness of this method. Following alkylation, the chiral auxiliary may be removed by lithium hydroxide or hydroperoxide hydrolysis [84], lithium benzyloxide transesterification, or LAH reduction [85]. Evans has used this methology in several total syntheses. One of the earliest was the Prelog-Djerassi lactone [86] and one of the more recent is ionomycin [87] (Figure 3.8). [Pg.92]

Amide and imide enolates. Scheme 5.31 illustrates several examples of asymmetric Michael additions of chiral amide and imide enolates. Yamaguchi [163] investigated the addition of amide lithium enolates to -ethyl crotonate, but found no consistent topicity trend for achiral amides. The three chiral amides tested are illustrated in Scheme 5.31a-c. The highest diastereoselectivity found was with the C2-symmetric amide shown in Scheme 5.3Ic. Evans s imides, as their titanium enolates, afforded the results shown in Scheme 5.31d and e [164,165]. The yields and selectivities for the reaction with acrylates and vinyl ketones are excellent, but the reaction is limited to P-unsubstituted Michael acceptors P-substituted esters and nitriles do not react, and 3-substituted enones add with no selectivity [165]. [Pg.201]

Yanagisawa A, Kikuchi T, Watanabe T, Yamamoto H. Enantioselective protonation of lithium enolates with chiral imides possessing a chiral amide. Bull Chem. Soc Jpn. 1999 72 2337 2343. [Pg.988]


See other pages where Chiral lithium amides imides is mentioned: [Pg.540]    [Pg.211]    [Pg.256]    [Pg.764]    [Pg.5277]    [Pg.5276]    [Pg.764]    [Pg.78]    [Pg.88]    [Pg.300]    [Pg.67]    [Pg.403]    [Pg.22]    [Pg.155]   
See also in sourсe #XX -- [ Pg.446 ]




SEARCH



Amides Chirality

Imide-amide

Lithium amide

Lithium imide

© 2024 chempedia.info