Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral ferroelectrics, external fields

Preceding the reports on elastomers, piezoelectricity in chiral smectic C phases of low-molar weight molecules or of polymers has usually been observed. The special property is that the system possesses macroscopic electrical polarization without an external field, so it is classified as ferroelectric. [Pg.241]

As witli tlie nematic phase, a chiral version of tlie smectic C phase has been observed and is denoted SniC. In tliis phase, tlie director rotates around tlie cone generated by tlie tilt angle [9,32]. This phase is helielectric, i.e. tlie spontaneous polarization induced by dipolar ordering (transverse to tlie molecular long axis) rotates around a helix. However, if tlie helix is unwound by external forces such as surface interactions, or electric fields or by compensating tlie pitch in a mixture, so tliat it becomes infinite, tlie phase becomes ferroelectric. This is tlie basis of ferroelectric liquid crystal displays (section C2.2.4.4). If tliere is an alternation in polarization direction between layers tlie phase can be ferrielectric or antiferroelectric. A smectic A phase foniied by chiral molecules is sometimes denoted SiiiA, altliough, due to the untilted symmetry of tlie phase, it is not itself chiral. This notation is strictly incorrect because tlie asterisk should be used to indicate the chirality of tlie phase and not tliat of tlie constituent molecules. [Pg.2549]

Photochemical control of properties of SmC LC phase was achieved by doping azobenzene A-4 possessing a chiral carbon atom to a ferroelectric LC A-5 [61]. When the SmC LC is in the surface stabilized state, the bulk dipole moment can be flipped by an external electric field. As the hysteresis curve for the Z form is narrower than that of E form, irradiation of UV light to cause E-... [Pg.249]

Calamitic metallomesogens forming a chiral smectic C phase (SmC ) are ferroelectric materials. Due to the low symmetry of this phase when the helix is unwound (C2) the molecular dipoles are aUgned within the layers of the SmC phase, giving rise to ferroelectric order in the layers. Because the SmC phase has a helical structure, there is no net macroscopic dipole moment for the bulk phase. However, it is possible to unwind the helix by application of an external electric field or by surface anchoring in thin cells. Under such conditions, a well-aligned film of the ferroelectric liquid crystal can exhibit a net polarisation, called the spontaneous polarisation (Ps). Ferroelectric liquid crystals are of interest for display applications because the macroscopic polarisation can be switched very fast by an... [Pg.108]

Mesogenic groups can be incorporated into polymeric systems [7]. This results in materials of novel features like main chain systems of extraordinary impact strength, side-chain systems with mesogens which can be switched in their orientation by external electric fields or—if chiral groups are attached to the mesogenic units—ferroelectric liquid crystalline polymers and elastomers. The dynamics of such systems depends in detail on its molecular architecture, i.e. especially the main chain polymer and its stiffness, the spacer molecules... [Pg.390]

Ferroelectric materials are a subclass of pyro- and piezoelectric materials (Fig. 1) (see Piezoelectric Polymers). They are very rarely foimd in crystalline organic or polymeric materials because ferroelectric hysteresis requires enough molecular mobility to reorient molecular dipoles in space. So semicrystalline poly(vinylidene fluoride) (PVDF) is nearly the only known compoimd (1). On the contrary, ferroelectric behavior is very often observed in chiral liquid crystalline materials, both low molar mass and poljuneric. For an overview of ferroelectric liquid crystals, see Reference 2. Tilted smectic liquid crystals that are made from chiral molecules lack the symmetry plane perpendicular to the smectic layer structure (Fig. 2). Therefore, they develop a spontaneous electric polarization, which is oriented perpendicular to the layer normal and perpendicular to the tilt direction. Because of the liquid-like structure inside the smectic layers, the direction of the tilt and thns the polar axis can be easily switched in external electric fields (see Figs. 2 and 3). [Pg.3097]

Recently there was also considerable activity in the investigations of the SHG in nematic and cholesteric phases induced by an external electric field. Such experiments allow the high order molecular hyperpolarizabilities to be calculated. " The SHG was also observed in a ferroelectric (chiral smectic C ) liquid crystal. ... [Pg.84]

The chirality in liquid crystal elastomers can be at the origin of additional physical properties such as ferroelectricity, pyroelectricity, circular dichro-ism, and nonlinear optics coupled to the polymer network. Applying external mechanical fields to the elastomers consequently causes electro-... [Pg.433]

The thermally excited cone motion, sometimes called the spin mode (this is very similar to the spin wave motion in ferromag-nets), or the Goldstone mode, is characteristic of the nonchiral SmC phase as well as the chiral SmC phase, but is of special interest in the latter because in the chiral case it couples to an external electric field and can therefore be excited in a controlled way. This Goldstone mode is of course the one that is used for the switching mechanism in surface-stabilized ferroelectric liquid crystal devices. The tilt mode, often, especially in the SmA phase, called the soft mode (although hard to excite in comparison with the cone mode, it may soften at a transition), is very different in character, and it is convenient to separate the two motions as essentially independent of each other. Again, this mode is present in the nonchiral SmA phase but cannot be detected there by dielectric methods, because a coupling to an electric field requires the phase to be chiral. In the SmA phase this mode appears as the electroclinic effect. [Pg.1589]

For chiral nematic liquid crystals, the method outlined previously for a planar nematic cell has been shown to be quite effective. For smectic-A the preparation method is similar to that for a homeotropic nematic cell. In this case, however, it helps to have an externally applied field to help maintain the homeotropic alignment as the sample (slowly) cools down from the nematic to the smectic phase. The cell preparation methods for a ferroelectric liquid crystal (FLC), smectic-C for surface stabilized FLC (SSFLC) operation, is more complicated as it involves surface stabi-lization. f On the other hand, smectic-A (Sm-A ) cells for soft-mode FLC (SMFLC) operation are easier to prepare using the methods described above. ... [Pg.17]


See other pages where Chiral ferroelectrics, external fields is mentioned: [Pg.930]    [Pg.930]    [Pg.138]    [Pg.422]    [Pg.415]    [Pg.102]    [Pg.344]    [Pg.126]    [Pg.148]    [Pg.139]    [Pg.338]    [Pg.70]    [Pg.191]    [Pg.70]    [Pg.80]    [Pg.491]    [Pg.259]    [Pg.833]    [Pg.230]   
See also in sourсe #XX -- [ Pg.508 ]

See also in sourсe #XX -- [ Pg.508 ]




SEARCH



Chiral fields

External field

© 2024 chempedia.info