Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral compounds system

The Cahn-Ingold-Prelog (CIP) rules stand as the official way to specify chirahty of molecular structures [35, 36] (see also Section 2.8), but can we measure the chirality of a chiral molecule. Can one say that one structure is more chiral than another. These questions are associated in a chemist s mind with some of the experimentally observed properties of chiral compounds. For example, the racemic mixture of one pail of specific enantiomers may be more clearly separated in a given chiral chromatographic system than the racemic mixture of another compound. Or, the difference in pharmacological properties for a particular pair of enantiomers may be greater than for another pair. Or, one chiral compound may rotate the plane of polarized light more than another. Several theoretical quantitative measures of chirality have been developed and have been reviewed elsewhere [37-40]. [Pg.418]

A large number of chiral crowns have been prepared by numerous groups. The reader is directed to the tables at the end of this chapter to obtain an overview of these structures. It would not be useful to try to recount the synthetic approaches used in the preparation of all of these compounds we have chosen rather to subdivide this mass of compounds into three principal groups. The groups are (1) Cram s chiral binaphthyl systems (2) chiral crowns based on the tartaric acid unit and (3) crowns incorporating sugar subunits. These are discussed in turn, below. [Pg.47]

The system that has replaced the dl system is the Cahn-Ingold Prelog system, in which the four groups on an asymmetric carbon are ranked according to a set of sequence rules. For our purposes, we confine ourselves to only a few of these rules, which are sufficient to deal with the vast majority of chiral compounds. [Pg.139]

The Cahn-Ingold-Prelog system is unambiguous and easily applicable in most cases. Whether to call an enantiomer (R) or (S) does not depend on correlations, but the configuration must be known before the system can be applied, and this does depend on correlations. The Cahn-Ingold-Prelog system has also been extended to chiral compounds that do not contain chiral atoms.A series of new rules have been proposed to address the few cases where the rules can be ambiguous, as in cyclophanes and other systems. ... [Pg.141]

Davankov, V. A., Separation of enantiomeric compounds using chiral HPLC systems. A brief review of general principles, advances, and development trends, Chromatographia, 27, 475, 1989. [Pg.51]

For a mixture of enantiomers it is thus possible to determine the ee-value without recourse to complicated calibration. The fact that the method is theoretically valid only if the g factor is independent of concentration and if it is linear with respect to ee has been emphasized repeatedly.84-89 However, it needs to be pointed out that these conditions may not hold if the chiral compounds form dimers or aggregates, because such enantiomeric or diastereomeric species would give rise to their own particular CD effects.88 Although such cases have yet to be reported, it is mandatory that this possibility be checked in each new system under study. [Pg.528]

Axial Chirality. For a system with four groups arranged out of the plane in pairs about an axis, the system is asymmetric when the groups on each side of the axis are different. Such a system is referred to as an axial chiral system. This structure can be considered a variant of central chirality. Some axial chiral molecules are allenes, alkylidene cyclohexanes, spiranes, and biaryls (along with their respective isomorphs). For example, compound 7a (binaphthol), which belongs to the class of biaryl-type axial chiral compounds, is extensively used in asymmetric synthesis. Examples of axial chiral compounds are given in Figure 1-5. [Pg.13]

Enzyme reductions of carbonyl groups have important applications in the synthesis of chiral compounds (as described in Chapter 10). Dehydrogenases are enzymes that catalyse, for example, the reduction of carbonyl groups they require co-factors as their co-substrates. Dehydrogenase-catalysed transformations on a practical scale can be performed with purified enzymes or with whole cells, which avoid the use of added expensive co-factors. Bakers yeast is the whole cell system most often used for the reduction of aldehydes and ketones. Biocatalytic activity can also be used to reduce carbon carbon double bonds. Since the enzymes for this reduction are not commercially available, the majority of these experiments were performed with bakers yeast1 41. [Pg.116]

Lyotropic polymeric LC, formed by dissolving two aromatic polyamides in concentrated sulphuric acid, have been studied using variable-director 13C NMR experiments.324 The experimental line shapes at different angles w.r.t the external field were used to extract macromolecular order and dynamic in these ordered fluids. An interesting application of lyotropic LC is for the chiral discrimination of R- and S-enantiomers, and has recently been demonstrated by Courtieu and co-workers.325 The idea was to include a chiral compound 1-deutero-l-phenylethanol in a chiral cage (e.g., /1-cyclodextrin) which was dissolved and oriented by the nematic mean field in a cromolyn-water system. Proton-decoupled 2H NMR spectrum clearly showed the quad-rupolar splittings of the R- and S-enantiomers. The technique is applicable to water-soluble solutes. [Pg.138]

The ideal solubility equation has significant value in chiral systems, where a single enantiomer is desired as the product [20]. The behaviour of chiral compounds is very important in biological systems and in drug development, where it is typical for just one enantiomer of an API to be biologically active. The undesired enantiomer may be inert, or possess more serious toxicity effects, as in the case of Thalidomide. Many enantiomeric systems form three discrete solid phases, depending on the solution concentration. Pure crystals of each enantiomer will form at high concentrations of their respective enantiomer. At... [Pg.52]

A comprehensive study on the temperature effect was done in 2004 for 71 chiral compounds on four glycopeptide CSPs TE, TAG, ristocetin A, and vancomycin phases, using the three RP, POM, and NP elution systems [95]. The separations were studied in the 5 5°C temperature range. Peak efficiencies always increased with temperature, but in only 17% of the separations studied, a small increase of the resolution was observed. In the rest of the cases, the resolution decreased or even vanished when temperature increased. All van t Hoff plots were linear, showing that... [Pg.134]

Cyclic amines (including local anesthetic drugs) and amides were among the first classes of chiral compounds investigated in the early stages of the application of macrocyclic antibiotics as chiral selectors therefore, they were screened on vancomycin [7], teicoplanin [30], and ristocetin A [33] CSPs, under RPmode systems. Cyclic imides (including barbiturates, piperidine-2,6-diones, and mephenytoin) have been separated on a vancomycin CSP [157], under NP and RP mobile phase conditions. [Pg.144]


See other pages where Chiral compounds system is mentioned: [Pg.77]    [Pg.1122]    [Pg.44]    [Pg.333]    [Pg.187]    [Pg.1122]    [Pg.203]    [Pg.305]    [Pg.157]    [Pg.62]    [Pg.73]    [Pg.215]    [Pg.315]    [Pg.36]    [Pg.44]    [Pg.55]    [Pg.380]    [Pg.1471]    [Pg.5]    [Pg.6]    [Pg.14]    [Pg.79]    [Pg.1]    [Pg.86]    [Pg.147]    [Pg.106]    [Pg.199]    [Pg.197]    [Pg.201]    [Pg.3]    [Pg.121]    [Pg.181]    [Pg.201]    [Pg.279]    [Pg.281]    [Pg.50]    [Pg.55]   
See also in sourсe #XX -- [ Pg.155 , Pg.156 , Pg.157 ]




SEARCH



Chiral compounds

Compounding systems

© 2024 chempedia.info