Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral compounds, Amino acids Diols

NMR can be a powerful tool for determination of enantiomeric excess or absolute configuration of the optically active compounds, however, these processes require the use of some auxiliaries, for example, chiral lanthanide shift reagents or chiral derivatising agent. In many cases, the starting point for determination of enantiopurity of amines, amino acids or diols is the formation of chiral imines. [Pg.127]

Increasing interest is expressed in diastereoselective addition of organometallic reagents to the ON bond of chiral imines or their derivatives, as well as chiral catalyst-facilitated enantioselective addition of nucleophiles to pro-chiral imines.98 The imines frequently selected for investigation include N-masked imines such as oxime ethers, sulfenimines, and /V-trimcthylsilylimines (150-153). A variety of chiral modifiers, including chiral boron compounds, chiral diols, chiral hydroxy acids, A-sull onyl amino acids, and /V-sulfonyl amido alcohols 141-149, have been evaluated for their efficiency in enantioselective allylboration reactions.680... [Pg.180]

Cyanohydrins are starting materials of widespread interest for preparing important compounds such as a-hydroxy acids/esters, a-amino acids, / -amino alcohols, a-hydroxy aldehydes, vicinal diols, and a-hydroxy ketones. Cyanohydrin compounds can be synthesized using various chiral catalysts such as cyclic... [Pg.456]

The applications of re-acidic chiral stationary phases include the resolution of a-blockers and /1-blockers, amines, arylacetamine, alkylcarbinols, hydantoins, barbiturates, naphthols, benzodiazapines, carboxylic acids, lactams, lactones, phthaldehydes selenoids, and phosphorus compounds. Hyun et al. [16] achieved a chiral resolution of a homologous series of iV-acyl-x-(l-naphthyl )cthylaminc on AA(3,5-dinitrobenzoyl-(i )-phenylglycine and N-(3,5 - dini tr o ben zoy I)-(,S ) -1 c u c ine CSPs. The authors used hexane-2-propanol (80 20, v/v) as the mobile phase. Similarly, the scope of re-basic CSPs comprises the chiral resolution of / -blockers, amino acids, amines, diamines, amino phosphonates, naphthols, benza-diazapines, carboxylic acids, hydroxy acids, dipeptides, tripeptides, diols,... [Pg.195]

Many of the chiral molecules containing amide groups were bonded to a solid support for the preparation of CSPs [16-19]. The racemic compounds resolved on these CSPs include a-hydroxycarbonyls, /i-hydroxycarbonyls, amino acids, amino alcohols, amine, and derivatized and underivatized diols. The preliminary chiral diamide phase [(/V-foriuyl-L-valyl)aminopropyl)silica gel] has sufficient separability for racemic /Y-acylatcd a-amino acid esters but not in other types of enantiomer [16]. Most of the eluents used with these CSPs are of normal phase mode, including w-hcxanc, 2-propanol, chlorinated organic solvents, and acetonitrile. [Pg.320]

Although prochiral or chiral alcohols and carboxylic acid esters initially served as the primary classes of substrates, compounds susceptible to processing via these two routes now encompass diols, a- and 3-hydroxy acids, cyanohydrins, chlorohydrins, diesters, lactones, amines, diamines, amino alcohols, and a-and 3-amino acid derivatives. Gotor and Arroyo have reviewed the use of biocatalysts for the preparation of pharma-eeutical intermediates and fine ehemieals. Some specific examples are indieated below. [Pg.1375]

Occasionally, a chiral diol can serve as host for one optical isomer (e.g., an epoxide), allowing the other one to be distilled out. The guest optical isomer can then be recovered by stronger heating. A quaternary ammonium salt, derived from the amino acid leucine, has been used to resolve 1,1 - bi-2-naphthol (7.4) by formation of an inclusion compound.57... [Pg.179]

In principle, any difunctional chiral compound, such as a diol, diamine, or amino alcohol, can form a cyclic boron derivative by reaction with borane, haloboronic acid or its esters, alkylboronic acids, trihaloboranes or similar compounds. Several syntheses of this type are described in chapters D.1.3.3.3. (together with applications for allylic additions to carbonyl compounds) and D. 1.1.2.1. (with applications of a-haloboronic acids). [Pg.182]

Chiral ligand 651 is obtained from the appropriate natural amino-acid phenylalanine, whereas the corresponding derivatives of valine or leucine proved to be slightly less effective [46], Axially prochiral, enantiotopic, biaryl-2,6-diols have been converted to the respective chiral compounds via enzymatic desymmetrization. Thus Pseudomonas cepacia lipase (PCL) catalysed the atropisomerically-selective hydrolysis of diacetate 654 to give monoacetate 655 in 67% yield and 96% e. e. [47], Scheme 24. [Pg.312]


See other pages where Chiral compounds, Amino acids Diols is mentioned: [Pg.149]    [Pg.70]    [Pg.212]    [Pg.224]    [Pg.229]    [Pg.364]    [Pg.70]    [Pg.196]    [Pg.166]    [Pg.324]    [Pg.344]    [Pg.456]    [Pg.70]    [Pg.113]    [Pg.1119]    [Pg.124]    [Pg.215]    [Pg.351]    [Pg.259]    [Pg.259]    [Pg.456]    [Pg.134]    [Pg.239]    [Pg.57]    [Pg.402]    [Pg.541]    [Pg.611]    [Pg.107]    [Pg.108]    [Pg.289]    [Pg.339]    [Pg.74]    [Pg.158]    [Pg.585]    [Pg.393]    [Pg.585]    [Pg.135]    [Pg.175]   


SEARCH



Amino acids compounds

Amino chirality

Amino compounds

Amino diol

Chiral acids

Chiral amino acids

Chiral compounds

Chiral compounds Amino acids

Chirality, amino acids

Diols acids

Diols compounds

Diols, chiral

© 2024 chempedia.info