Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Volatility chemical vapor deposition

Fluorination of tungsten and rhenium produces tungsten hexafluoride, WF, and rhenium hexafluoride [10049-17-9J, ReF, respectively. These volatile metal fluorides are used in the chemical vapor deposition industry to produce metal coatings and intricately shaped components (see Thin films,... [Pg.131]

Dimethylcadmium has found use as a volatile source of Cd for metal organic chemical vapor deposition (MOCVD) production of cadmium-containing semiconductor thin films (qv) such as CdS, Cdi 2 Hg -Te, or Cdi 2 Mn -Te, as multiple quantum weU species (32). Semiconductor-grade material seUs for... [Pg.396]

The growing interest in volatile silyl-metal complexes for chemical vapor deposition reactions should also be mentioned. This technique is extremely useful for the preparation of silicide films in microelectronic devices. Further examples of applications of silicon-metal compounds are given in the appropriate sections. [Pg.4]

Several patents dealing with the use of volatile metal amidinate complexes in MOCVD or ALD processes have appeared in the literature.The use of volatile amidinato complexes of Al, Ga, and In in the chemical vapor deposition of the respective nitrides has been reported. For example, [PhC(NPh)2]2GaMe was prepared in 68% yield from GaMes and N,N -diphenylbenzamidine in toluene. Various samples of this and related complexes could be heated to 600 °C in N2 to give GaN. A series of homoleptic metal amidinates of the general type [MIRCfNROilnl (R = Me, Bu R = Pr, BuO has been prepared for the transition metals Ti, V, Mn, Fe, Co, Ni, Cu, Ag, and La. The types of products are summarized in Scheme 226. The new compounds were found to have properties well-suited for use as precursors for atomic layer deposition (ALD) of thin films. [Pg.339]

Silver(I) /3-diketonate derivatives have received significant attention due to the ease with which they can be converted to the elemental metal by thermal decomposition techniques such as metal organic chemical vapor deposition (MOCVD).59 The larger cationic radius of silver(I) with respect to copper(I) has caused problems in achieving both good volatility and adequate stability of silver(I) complexes for the use in CVD apparatus. These problems have been overcome with the new techniques such as super critical fluid transport CVD (SFTCVD), aerosol-assisted CVD (AACVD), and spray pyrolysis, where the requirements for volatile precursors are less stringent. [Pg.952]

In chemical vapor deposition (CVD or MOCVD), a film of the desired material is prepared by evaporation of volatile precursor molecules which then decompose to give a film deposited on the substrate. The ordering in the film as it grows is dictated by the surface ordering of the substrate, hence the deposition is epitaxial . The necessary decomposition of the precursor molecules can take place either on the surface of the substrate or in the gas phase close to it. [Pg.702]

Similar to chemical vapor deposition, reactants or precursors for chemical vapor synthesis are volatile metal-organics, carbonyls, hydrides, chlorides, etc. delivered to the hot-wall reactor as a vapor. A typical laboratory reactor consists of a precursor delivery system, a reaction zone, a particle collector, and a pumping system. Modification of the precursor delivery system and the reaction zone allows synthesis of pure oxide, doped oxide, or multi-component nanoparticles. For example, copper nanoparticles can be prepared from copper acetylacetone complexes [70], while europium doped yttiria can be obtained from their organometallic precursors [71]. [Pg.384]

Tiitta M, Niinisto L (1997) Volatile metal beta-diketonates, ALE and CVD precursors for electrolimiinescent device thin films. Chemical Vapor Deposition 3(4), 167-182... [Pg.228]

Many [M(dik)4] complexes are volatile, especially those that contain fluorinated diketonate ligands. Mass spectra and gas chromatographic behavior of several of these complexes have been studied (see Table 10). Isenhour and coworkers240 241 have employed fluorinated diketonates in mass spectrometric procedures for determination of Zr and Zr/Hf ratios in geological samples. The most intense peak in mass spectra of [M(dik)4] complexes is [M(dik)3]+. Sievers et al.242 have used gas chromatography of metal trifluoroacetylacetonates to separate Zr from Al, Cr and Rh. However, attempts to separate [Zr(tfacac)4] and [Hf(tfacac)4] by gas chromatography were unsuccessful. Zirconium and hafnium can be separated by solvent extraction procedures that employ fluorinated diketones.105 [M(dik)4] (M = Zr or Hf dik = acac, dpm, tfacac or hfacac) have been used as volatile source materials for chemical vapor deposition of thin films of the metal oxides.243,244... [Pg.399]

A large class of coordination compounds, metal chelates, is represented in relation to microwave treatment by a relatively small number of reported data, mainly p-diketonates. Thus, volatile copper) II) acetylacetonate was used for the preparation of copper thin films in Ar — H2 atmosphere at ambient temperature by microwave plasma-enhanced chemical vapor deposition (CVD) [735a]. The formed pure copper films with a resistance of 2 3 pS2 cm were deposited on Si substrates. It is noted that oxygen atoms were never detected in the deposited material since Cu — O intramolecular bonds are totally broken by microwave plasma-assisted decomposition of the copper complex. Another acetylacetonate, Zr(acac)4, was prepared from its hydrate Zr(acac)4 10H2O by microwave dehydration of the latter [726]. It is shown [704] that microwave treatment is an effective dehydration technique for various compounds and materials. Use of microwave irradiation in the synthesis of some transition metal phthalocyanines is reported in Sec. 5.1.1. Their relatives - porphyrins - were also obtained in this way [735b]. [Pg.285]

Despite the kinetic lability of the Ln-X-cr-bonds (even the thermodynamically very stable Ln-OR bond is subject to rapid ligand exchange reactions [49]) organolanthanide compounds are thermally very robust over a wide range of temperature (Fig. 5) [114, 116, 139, 144-151]. Thermal stability is not only favorable in catalytic transformations at elevated temperatures [47], for the support of volatile molecular precursors is of fundamental importance in chemical vapor deposition techniques the sublimation behavior is a criterion of thermal stability and suitability for these processes (Fig. 5). [Pg.18]


See other pages where Volatility chemical vapor deposition is mentioned: [Pg.137]    [Pg.217]    [Pg.391]    [Pg.183]    [Pg.249]    [Pg.28]    [Pg.341]    [Pg.94]    [Pg.62]    [Pg.347]    [Pg.577]    [Pg.1031]    [Pg.401]    [Pg.180]    [Pg.78]    [Pg.159]    [Pg.265]    [Pg.436]    [Pg.105]    [Pg.120]    [Pg.367]    [Pg.258]    [Pg.81]    [Pg.115]    [Pg.126]    [Pg.419]    [Pg.453]    [Pg.183]    [Pg.1]    [Pg.1162]    [Pg.159]    [Pg.300]    [Pg.1514]    [Pg.430]    [Pg.110]    [Pg.93]    [Pg.229]    [Pg.236]    [Pg.360]   
See also in sourсe #XX -- [ Pg.218 , Pg.223 , Pg.327 ]

See also in sourсe #XX -- [ Pg.218 , Pg.223 , Pg.327 ]




SEARCH



Chemical Volatilization

Chemical vapor deposition

Chemicals volatile

Volatile vapors

© 2024 chempedia.info