Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactivity electronic structure

As with other schemes of partitioning the electron density in molecules, Mulliken population analysis is arbitrary and is strongly dependent on the particular basis set employed. However, the comparison of population analyses for a series of molecules is useful for a quantitative description of intramolecular interactions, chemical reactivity and structural information. In another approach, the Lowdin population analysis, the atomic orbitals are first transformed to an orthogonal set, as are the molecular orbital coefficients [Lowdin, 1970]. [Pg.48]

In this chapter, I have attempted to give an overview of the field of polyyne-type materials. End-capped oligoynes supply fundamental properties about polyyne chains e.g. chemical reactivity, electronic properties, structural information, and so on. Certain characteristics of each oligoyne lead to... [Pg.213]

Part 3, Applications, begins with Chapter 8, Studying Chemical Reactions and Reactivity, which discusses using electronic structure theory to investigate chemical problems. It includes consideration of reaction path features to investigate the routes between transition structures and the equilibrium structures they connect on the reaction s potential energy surface. [Pg.317]

As we saw in Chapter 19, chlorine represents the other extreme in chemical reactivity. Its most obvious chemical characteristic is its ability to acquire electrons to form negative chloride ions, and, in the process, to oxidize some other substance. Since the tendency to lose or gain electrons is a result of the details of the electronic structure of the atom, let us try to explain the chemistry of the third-row elements on this basis. [Pg.367]

Within the context of this book the quantitative relationships between structure and chemical reactivity are very informative. One of the early postulates of Ingold and his school in the 1930s (review see Ingold, 1969, p. 78) was that the electronic effects of substituents are composed of two main parts a field/inductive component and a mesomeric component. Hammett s work indicated clearly from the beginning that his substituent constants am and crp reflect Ingold s postulate in numerical terms. In particular, many observations indicated that the /7-substituent constant ap is the sum of a field/inductive component 0 and a resonance (mesomeric) component (Jr. [Pg.149]

Benzocyclopropene is an intriguing example in which the electronic structure of benzene is greatly perturbed by the fusion of the smallest alicyclic ring, cyclopropene, to the aromatic system. Benzocyclopropene thus arouses theoretical interest and the high strain energy (approximately 68 kcal./mole)3 associated with the compound suggests unusual chemical reactivity. A review article has recently appeared.4... [Pg.14]

Potential energy hypersurfaces form the basis for the complete description of a reacting chemical system, if they are throughly researched (see also part 2.2). Due to the fact that when the potential energy surface is known and therefore the geometrical and electronical structure of the educts, activated complexes, reactive intermediates, if available, as well as the products, are also known, the characterizations described in parts 3.1 and 3.2 can be carried out in theory. [Pg.192]

The Lewis stmcture of a molecule shows how the valence electrons are distributed among the atoms. This gives a useful qualitative picture, but a more thorough understanding of chemistry requires more detailed descriptions of molecular bonding and molecular shapes. In particular, the three-dimensional structure of a molecule, which plays an essential role in determining chemical reactivity, is not shown directly by a Lewis structure. [Pg.603]

Point defects were mentioned in a prior chapter. We now need to determine how they aiffect the structure auid chemical reactivity of the solid state. We will begin by identifying the various defects which can arise in solids and later will show how they can be manipulated to obtain desirable properties not found in naturally formed solids. Since we have already defined solids as either homogeneous and heterogeneous, let us look first at the homogeneous t5 e of solid. We will first restrict our discussion to solids which are stoichiometric, and later will examine solids which can be classified as "non-stoichiometric", or having an excess of one or another of one of the building blocks of the solid. These occur in semi-conductors as well as other types of electronically or optically active solids. [Pg.74]

Compared with monocyclic aromatic hydrocarbons and the five-membered azaarenes, the pathways used for the degradation of pyridines are less uniform, and this is consistent with the differences in electronic structure and thereby their chemical reactivity. For pyridines, both hydroxylation and dioxygenation that is typical of aromatic compounds have been observed, although these are often accompanied by reduction of one or more of the double bonds in the pyridine ring. Examples are used to illustrate the metabolic possibilities. [Pg.527]


See other pages where Chemical reactivity electronic structure is mentioned: [Pg.47]    [Pg.191]    [Pg.344]    [Pg.23]    [Pg.35]    [Pg.342]    [Pg.94]    [Pg.344]    [Pg.2652]    [Pg.509]    [Pg.44]    [Pg.103]    [Pg.64]    [Pg.2651]    [Pg.189]    [Pg.76]    [Pg.207]    [Pg.7]    [Pg.265]    [Pg.2]    [Pg.86]    [Pg.180]    [Pg.37]    [Pg.370]    [Pg.103]    [Pg.104]    [Pg.186]    [Pg.30]    [Pg.54]    [Pg.58]    [Pg.379]    [Pg.463]    [Pg.469]    [Pg.185]    [Pg.102]    [Pg.149]    [Pg.437]    [Pg.124]   


SEARCH



Electronic chemicals

© 2024 chempedia.info