Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactions moles

F flow rate of gas, standard cubic B rate of chemical reaction, mole/... [Pg.124]

Volume-based rate of a chemical reaction, mole extent/time volume... [Pg.487]

Extent of a chemical reaction, mole extent (Eq. 2.3.1) Reaction extent per unit time, mole extent/time (Eq. 2.3.10) Molar fraction, dimensionless... [Pg.488]

The second term in equation (1-64) represents the molar rate of accumulation of A per unit volume. The term RA represents the volumetric rate of formation of A by chemical reaction (moles of A formed/volume-time). An expression similar to equation (1-64) can be written for each component of the mixture ... [Pg.37]

When you re working with chemical reactions, moles can help you figure out how much of a product you can expect to get based on how much of the reactants you have. [Pg.130]

The total enthalpy correction due to chemical reactions is the sum of all the enthalpies of dimerization for each i-j pair multiplied by the mole fraction of dimer i-j. Since this gives the enthalpy correction for one mole of true species, we multiply this quantity by the ratio of the true number of moles to the stoichiometric number of moles. This gives... [Pg.136]

If a themiodynamic system includes species that may undergo chemical reactions, one must allow for the fact that, even in a closed system, the number of moles of a particular species can change. If a chemical reaction (e.g. N2 + 3H2 INHg) is represented by the symbolic equation... [Pg.361]

A balanced chemical reaction indicates the quantitative relationships between the moles of reactants and products. These stoichiometric relationships provide the basis for many analytical calculations. Consider, for example, the problem of determining the amount of oxalic acid, H2C2O4, in rhubarb. One method for this analysis uses the following reaction in which we oxidize oxalic acid to CO2. [Pg.20]

The balanced chemical reaction provides the stoichiometric relationship between the moles of Fe used and the moles of oxalic acid in the sample being analyzed— specifically, one mole of oxalic acid reacts with two moles of Fe. As shown in Example 2.6, the balanced chemical reaction can be used to determine the amount of oxalic acid in a sample, provided that information about the number of moles of Fe is known. [Pg.20]

Techniques responding to the absolute amount of analyte are called total analysis techniques. Historically, most early analytical methods used total analysis techniques, hence they are often referred to as classical techniques. Mass, volume, and charge are the most common signals for total analysis techniques, and the corresponding techniques are gravimetry (Chapter 8), titrimetry (Chapter 9), and coulometry (Chapter 11). With a few exceptions, the signal in a total analysis technique results from one or more chemical reactions involving the analyte. These reactions may involve any combination of precipitation, acid-base, complexation, or redox chemistry. The stoichiometry of each reaction, however, must be known to solve equation 3.1 for the moles of analyte. [Pg.38]

Almost any chemical reaction can serve as a titrimetric method provided that three conditions are met. The first condition is that all reactions involving the titrant and analyte must be of known stoichiometry. If this is not the case, then the moles of titrant used in reaching the end point cannot tell us how much analyte is in our sample. Second, the titration reaction must occur rapidly. If we add titrant at a rate that is faster than the reaction s rate, then the end point will exceed the equivalence point by a significant amount. Finally, a suitable method must be available for determining the end point with an acceptable level of accuracy. These are significant limitations and, for this reason, several titration strategies are commonly used. [Pg.274]

If the T and P of a multiphase system are constant, then the quantities capable of change are the iadividual mole numbers of the various chemical species / ia the various phases p. In the absence of chemical reactions, which is assumed here, the may change only by iaterphase mass transfer, and not (because the system is closed) by the transfer of matter across the boundaries of the system. Hence, for phase equUibrium ia a TT-phase system, equation 212 is subject to a set of material balance constraints ... [Pg.498]

The stoichiometric numbers provide relations among the changes in mole numbers of chemical species which occur as the result of chemical reaction. Thus, for reactionj ... [Pg.500]

The general criterion of chemical reaction equiUbria is the same as that for phase equiUbria, namely that the total Gibbs energy of a closed system be a minimum at constant, uniform T and P (eq. 212). If the T and P of a siagle-phase, chemically reactive system are constant, then the quantities capable of change are the mole numbers, n. The iadependentiy variable quantities are just the r reaction coordinates, and thus the equiUbrium state is characterized by the rnecessary derivative conditions (and subject to the material balance constraints of equation 235) where j = 1,11,.. ., r ... [Pg.501]

For a PVnr system of uniform T and P containing N species and 7T phases at thermodynamic equiUbrium, the intensive state of the system is fully deterrnined by the values of T, P, and the (N — 1) independent mole fractions for each of the equiUbrium phases. The total number of these variables is then 2 + 7t N — 1). The independent equations defining or constraining the equiUbrium state are of three types equations 218 or 219 of phase-equiUbrium, N 7t — 1) in number equation 245 of chemical reaction equiUbrium, r in number and equations of special constraint, s in number. The total number of these equations is A(7t — 1) + r -H 5. The number of equations of reaction equiUbrium r is the number of independent chemical reactions, and may be deterrnined by a systematic procedure (6). Special constraints arise when conditions are imposed, such as forming the system from particular species, which allow one or more additional equations to be written connecting the phase-rule variables (6). [Pg.502]

The two main principles involved in establishing conditions for performing a reaction are chemical kinetics and thermodynamics. Chemical kinetics is the study of rate and mechanism by which one chemical species is converted to another. The rate is the mass in moles of a product produced or reactant consumed per unit time. The mechanism is the sequence of individual chemical reaction whose overall result yields the observed reaction. Thermodynamics is a fundamental of engineering having many applications to chemical reactor design. [Pg.59]

To complete the. set of possible chemical reactions, consider the combustion of a fuel such as methane with a recirculated flue gas containing m moles of carbon dioxide, but assuming that water vapour has been removed from the recycling flue gas. If the additional air supply (n moles) is assumed to be sufficient for complete combustion, then... [Pg.144]

Chemical reaction equilibrium calculations are structured around another thermodynamic term called tlie free energy. Tliis so-callcd free energy G is a property that also cannot be defined easily without sonic basic grounding in tlicmiodynamics. However, no such attempt is made here, and the interested reader is directed to tlie literature. " Note that free energy has the same units as entlialpy and internal energy and may be on a mole or total mass basis. Some key equations and information is provided below. [Pg.123]

Stoichiometry in Reactive Systems. The use of molar units is preferred in chemical process calculations since the stoichiometry of a chemical reaction is always interpreted in terms of the number of molecules or number of moles. A stoichiometric equation is a balanced representation that indicates the relative proportions in which the reactants and products partake in a given reaction. For example, the following stoichiometric equation represents the combustion of propane in oxygen ... [Pg.334]

One molecule (or mole) of propane reacts with five molecules (or moles) of oxygen to produce three molecules (or moles) or carbon dioxide and four molecules (or moles) of water. These numbers are called stoichiometric coefficients (v.) of the reaction and are shown below each reactant and product in the equation. In a stoichiometrically balanced equation, the total number of atoms of each constituent element in the reactants must be the same as that in the products. Thus, there are three atoms of C, eight atoms of H, and ten atoms of O on either side of the equation. This indicates that the compositions expressed in gram-atoms of elements remain unaltered during a chemical reaction. This is a consequence of the principle of conservation of mass applied to an isolated reactive system. It is also true that the combined mass of reactants is always equal to the combined mass of products in a chemical reaction, but the same is not generally valid for the total number of moles. To achieve equality on a molar basis, the sum of the stoichiometric coefficients for the reactants must equal the sum of v. for the products. Definitions of certain terms bearing relevance to reactive systems will follow next. [Pg.334]

This is roughly comparable to the energy effects in chemical reactions about 240 kj of heat is evolved when a mole of H2 bums, for instance. [Pg.135]

Equations give us all the information we need for computing the weights of the substances consumed or produced in chemical reactions. Suppose we wish to know how many moles of water are produced when 68 grams of ammonia are burned. Equation (9) represents the reaction ... [Pg.44]

In this generalized equation, (75), we see that again the numerator is the product of the equilibrium concentrations of the substances formed, each raised to the power equal to the number of moles of that substance in the chemical equation. The denominator is again the product of the equilibrium concentrations of the reacting substances, each raised to a power equal to the number of moles of the substance in the chemical equation. The quotient of these two remains constant. The constant K is called the equilibrium constant. This generalization is one of the most useful in all of chemistry. From the equation for any chemical reaction one can immediately write an expression, in terms of the concentrations of reactants and products, that will be constant at any given temperature. If this constant is measured (by measuring all of the concentrations in a particular equilibrium solution), then it can be used in calculations for any other equilibrium solution at that same temperature. [Pg.153]

Now let s be more quantitative. Let s repeat the experiment, weighing the metal rods before and after the test. The weighing shows that during the test the copper rod has become 0.63S gram lighter and the silver rod has become 2.16 grams heavier. Chemical reaction has occurred and, as any good chemist will do, we immediately ask, How many moles of copper and silver are involved ... [Pg.201]

The equation for a chemical reaction speaks in terms of molecules or of moles. It contains the basis for stoichiometric calculations. However, in the laboratory a chemist measures amounts in such units as grams and milliliters. The first step in any quantitative calculation, then, is to convert the measured amounts to moles. In mole units, the balanced reaction connects quantities of reactants and products. Finally, the result is expressed in the desired units (which may not necessarily be the same as the original units). [Pg.225]


See other pages where Chemical reactions moles is mentioned: [Pg.651]    [Pg.124]    [Pg.52]    [Pg.124]    [Pg.919]    [Pg.651]    [Pg.124]    [Pg.52]    [Pg.124]    [Pg.919]    [Pg.158]    [Pg.181]    [Pg.418]    [Pg.883]    [Pg.500]    [Pg.163]    [Pg.541]    [Pg.1281]    [Pg.164]    [Pg.317]    [Pg.466]    [Pg.166]    [Pg.255]    [Pg.118]    [Pg.120]    [Pg.433]    [Pg.108]    [Pg.110]    [Pg.119]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Chemical reactions mole concepts

Experiment 9 Determination of Mass and Mole Relationship in a Chemical Reaction

© 2024 chempedia.info