Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactions independence

It is denoted by C and depends on the flame temperature, mean molecular mass of the combustion products and propellant formulation. It is a fundamental parameter which gives the energy available on combustion and can be used to compare the efficiency of different chemical reactions independently of the Pc. For propellants, the value of C ranges between 1200 and 1600 ms-1. It is determined by firing a propellant grain in a motor and evaluating the area under the P-t profile and using Equation 4.11. [Pg.224]

Using such a calorimeter (from the Latin for heat-measure), Berthelot ran careful determinations of the quantity of heat evolved by hundreds of different chemical reactions. Independently, the Danish chemist Hans Peter Jorgen Julius Thomsen (1826-1909) did similar experiments. [Pg.148]

Hess s law Sometimes called the law of constant heat summation, it states that the total heat change accompanying a chemical reaction is independent of the route taken in reactants becoming products. Hess s law is an application of the first law of thermodynamics to chemical reactions. [Pg.202]

Although a separation of electronic and nuclear motion provides an important simplification and appealing qualitative model for chemistry, the electronic Sclirodinger equation is still fomiidable. Efforts to solve it approximately and apply these solutions to the study of spectroscopy, stmcture and chemical reactions fonn the subject of what is usually called electronic structure theory or quantum chemistry. The starting point for most calculations and the foundation of molecular orbital theory is the independent-particle approximation. [Pg.31]

The reaction database compiled on Biochemical Pathways can be accessed on the web and can be investigated with the retrieval system C ROL (Compound Access and Retrieval On Line) [211 that provides a variety of powerful search techniques. The Biochemical Pathways database is split into a database of chemical structures and a database of chemical reactions that can be searched independently but which have been provided with efficient crosslinks between these two databases. [Pg.564]

In principle, Chen, given the flux relations there is no difficulty in constructing differencial equations to describe the behavior of a catalyst pellet in steady or unsteady states. In practice, however, this simple procedure is obstructed by the implicit nature of the flux relations, since an explicit solution of usefully compact form is obtainable only for binary mixtures- In steady states this impasse is avoided by using certain, relations between Che flux vectors which are associated with the stoichiometry of Che chemical reaction or reactions taking place in the pellet, and the major part of Chapter 11 is concerned with the derivation, application and limitations of these stoichiometric relations. Fortunately they permit practicable solution procedures to be constructed regardless of the number of substances in the reaction mixture, provided there are only one or two stoichiomeCrically independent chemical reactions. [Pg.5]

The differential material balances contain a large number of physical parameters describing the structure of the porous medium, the physical properties of the gaseous mixture diffusing through it, the kinetics of the chemical reaction and the composition and pressure of the reactant mixture outside the pellet. In such circumstances it Is always valuable to assemble the physical parameters into a smaller number of Independent dimensionless groups, and this Is best done by writing the balance equations themselves in dimensionless form. The relevant equations are (11.20), (11.21), (11.22), (11.23), (11.16) and the expression (11.27) for the effectiveness factor. [Pg.122]

In section 11.3 vie showed that the difficult problem of solving the flux relations can be circumvented rather simply when the stoichiometric relations are satisfied by the flux vectors, but the treatment given there was limited to the case of a single Independent chemical reaction, when the stoichiometric relations permit all the flux vectors to be expressed in terms of any one of them. The question then arises whether any comparable simplification is possible v en the reactants participate in more than one independent reaction. [Pg.150]

Let us suppose that there are several Independent chemical reactions, which are numbered, and that ft C ,T) denotes the rate of the re-... [Pg.159]

In the last chapter we presented arguments supporting the idea that reactivity is independent of molecular size. Although the chemical reactions are certainly different in this chapter and the last, we shall continue to maintain this position... [Pg.347]

Step 4 of the thermal treatment process (see Fig. 2) involves desorption, pyrolysis, and char formation. Much Hterature exists on the pyrolysis of coal (qv) and on different pyrolysis models for coal. These models are useful starting points for describing pyrolysis in kilns. For example, the devolatilization of coal is frequently modeled as competing chemical reactions (24). Another approach for modeling devolatilization uses a set of independent, first-order parallel reactions represented by a Gaussian distribution of activation energies (25). [Pg.51]

Model Reactions. Independent measurements of interfacial areas are difficult to obtain in Hquid—gas, Hquid—Hquid, and Hquid—soHd—gas systems. Correlations developed from studies of nonreacting systems maybe satisfactory. Comparisons of reaction rates in reactors of known small interfacial areas, such as falling-film reactors, with the reaction rates in reactors of large but undefined areas can provide an effective measure of such surface areas. Another method is substitution of a model reaction whose kinetics are well estabUshed and where the physical and chemical properties of reactants are similar and limiting mechanisms are comparable. The main advantage of employing a model reaction is the use of easily processed reactants, less severe operating conditions, and simpler equipment. [Pg.516]

For a PVnr system of uniform T and P containing N species and 7T phases at thermodynamic equiUbrium, the intensive state of the system is fully deterrnined by the values of T, P, and the (N — 1) independent mole fractions for each of the equiUbrium phases. The total number of these variables is then 2 + 7t N — 1). The independent equations defining or constraining the equiUbrium state are of three types equations 218 or 219 of phase-equiUbrium, N 7t — 1) in number equation 245 of chemical reaction equiUbrium, r in number and equations of special constraint, s in number. The total number of these equations is A(7t — 1) + r -H 5. The number of equations of reaction equiUbrium r is the number of independent chemical reactions, and may be deterrnined by a systematic procedure (6). Special constraints arise when conditions are imposed, such as forming the system from particular species, which allow one or more additional equations to be written connecting the phase-rule variables (6). [Pg.502]

The generalized transport equation, equation 17, can be dissected into terms describing bulk flow (term 2), turbulent diffusion (term 3) and other processes, eg, sources or chemical reactions (term 4), each having an impact on the time evolution of the transported property. In many systems, such as urban smog, the processes have very different time scales and can be viewed as being relatively independent over a short time period, allowing the equation to be "spht" into separate operators. This greatly shortens solution times (74). The solution sequence is... [Pg.384]

The development of combustion theory has led to the appearance of several specialized asymptotic concepts and mathematical methods. An extremely strong temperature dependence for the reaction rate is typical of the theory. This makes direct numerical solution of the equations difficult but at the same time accurate. The basic concept of combustion theory, the idea of a flame moving at a constant velocity independent of the ignition conditions and determined solely by the properties and state of the fuel mixture, is the product of the asymptotic approach (18,19). Theoretical understanding of turbulent combustion involves combining the theory of turbulence and the kinetics of chemical reactions (19—23). [Pg.517]

Equation (4-274) for each independent chemical reaction, giving r equations. [Pg.534]

The number of independent chemical reactions / can be determined as follows ... [Pg.535]

In this procedure, the question of what chemical reactions are involved never enters directly into any of the equations. However, the choice of a set of species is entirely eqmvalent to the choice of a set of independent reactions among the species. In any event, a set of species or an equivalent set of independent reactions must always be assumed, and different assumptions produce different results. [Pg.544]

According to this method, it is not necessaiy to investigate the kinetics of the chemical reactions in detail, nor is it necessary to determine the solubihties or the diffusivities of the various reactants in their unreacted forms. To use the method for scaling up, it is necessaiy independently to obtain data on the values of the interfacial area per unit volume a and the physical mass-transfer coefficient /c for the commercial packed tower. Once these data have been measured and tabulated, they can be used directly for scahng up the experimental laboratory data for any new chemic ly reac ting system. [Pg.1366]

For many laboratoiy studies, a suitable reactor is a cell with independent agitation of each phase and an undisturbed interface of known area, like the item shown in Fig. 23-29d, Whether a rate process is controlled by a mass-transfer rate or a chemical reaction rate sometimes can be identified by simple parameters. When agitation is sufficient to produce a homogeneous dispersion and the rate varies with further increases of agitation, mass-transfer rates are likely to be significant. The effect of change in temperature is a major criterion-, a rise of 10°C (18°F) normally raises the rate of a chemical reaction by a factor of 2 to 3, but the mass-transfer rate by much less. There may be instances, however, where the combined effect on chemical equilibrium, diffusivity, viscosity, and surface tension also may give a comparable enhancement. [Pg.2116]

Until the second half of the twentieth century, the structure of a substance—a newly discovered natural product, for example—was determined using information obtained from chemical reactions. This information included the identification of functional groups by chemical tests, along with the results of experiments in which the substance was broken down into smaller, more readily identifiable fragments. Typical of this approach is the demonstration of the presence of a double bond in an alkene by catalytic hydrogenation and subsequent determination of its location by ozonolysis. After-considering all the available chemical evidence, the chemist proposed a candidate structure (or structures) consistent with the observations. Proof of structure was provided either by converting the substance to some already known compound or by an independent synthesis. [Pg.519]

In Eq. (4-29) jc is the distance traveled by the wave, and a is the absorption coefficient. Sound absorption can occur as a result of viscous losses and heat losses (these together constitute classical modes of absorption) and by coupling to a chemical reaction, as described in the preceding paragraph. The theory of classical sound absorption shows that a is directly proportional to where / is the sound wave frequency (in Hz), so results are usually reported as a//, for this is, classically, frequency independent. [Pg.145]


See other pages where Chemical reactions independence is mentioned: [Pg.284]    [Pg.190]    [Pg.200]    [Pg.284]    [Pg.190]    [Pg.200]    [Pg.664]    [Pg.887]    [Pg.2115]    [Pg.181]    [Pg.158]    [Pg.411]    [Pg.346]    [Pg.503]    [Pg.324]    [Pg.286]    [Pg.541]    [Pg.1497]    [Pg.341]    [Pg.42]    [Pg.122]    [Pg.476]    [Pg.193]    [Pg.301]    [Pg.255]    [Pg.120]    [Pg.903]    [Pg.359]    [Pg.841]    [Pg.332]    [Pg.1304]   
See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Chemical reaction independent reactions

Chemical reaction independent reactions

Chemical reactions, kinetics pressure-independent

Gibbs Phase Rule for Chemically Reacting Systems and Independent Reactions

Independent and Dependent Chemical Reactions

Independent chemical reactions

Independent chemical reactions example

Independent reactions

Number of independent chemical reactions

Reaction reactions, independent

Reactions independance

© 2024 chempedia.info