Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reaction control parameters

Pressure is one of the most important parameters for chemical reaction control and its measurement is essential. Small reaction channels ( 1-2 mm) without dead volumes require special sensor configurations. Some different systems for small systems are available, and one example is presented here. [Pg.1168]

For many laboratoiy studies, a suitable reactor is a cell with independent agitation of each phase and an undisturbed interface of known area, like the item shown in Fig. 23-29d, Whether a rate process is controlled by a mass-transfer rate or a chemical reaction rate sometimes can be identified by simple parameters. When agitation is sufficient to produce a homogeneous dispersion and the rate varies with further increases of agitation, mass-transfer rates are likely to be significant. The effect of change in temperature is a major criterion-, a rise of 10°C (18°F) normally raises the rate of a chemical reaction by a factor of 2 to 3, but the mass-transfer rate by much less. There may be instances, however, where the combined effect on chemical equilibrium, diffusivity, viscosity, and surface tension also may give a comparable enhancement. [Pg.2116]

The Bioreactor is the major equipment used in biochemical processes. It differs totally from a simple chemical reaction vessel. To control physical operating parameters and microbial environmental conditions, there are several influential variables ... [Pg.293]

Controlled-potential (potentiostatic) techniques deal with the study of charge-transfer processes at the electrode-solution interface, and are based on dynamic (no zero current) situations. Here, the electrode potential is being used to derive an electron-transfer reaction and the resultant current is measured. The role of the potential is analogous to that of the wavelength in optical measurements. Such a controllable parameter can be viewed as electron pressure, which forces the chemical species to gain or lose an electron (reduction or oxidation, respectively). [Pg.2]

Thus, under the hydrodynamic conditions prevailing at high rotation rates, the one-electron product is removed more rapidly by convection than by the chemical reaction, while at slow rotation speeds the chemical reaction and further electron transfer predominates. The form of the electrode and the hydrodynamic conditions prevailing in the electrolysis solution are therefore parameters which require controlling but which give additional flexibility in the design of syntheses. [Pg.193]

In further work, the achievement of well-controlled reaction conditions in micro reactors is highlighted to provide chemical data yielding a highly parallel system of problem-solving fimctions [131]. This is used to approach a class of problems in computer science that is called NP-complete, for which algorithms are very difficult to solve. In summary, this mathematical approach is used to describe chemical reactions which are highly parallel systems as the parameter space and the related dependencies are virtually infinite (Figure 4.80). [Pg.511]

The chemical reactions induced by ultrasonic irradiation are generally influenced by the irradiation conditions and procedures. It is suggested that ultrasound intensity , dissolved gas , distance between the reaction vessel and the oscillator and ultrasound frequency are important parameters to control the sonochemical reactions. [Pg.137]

The issue of parallel versus sequential synthesis using multimode or monomode cavities, respectively, deserves special comment. While the parallel set-up allows for a considerably higher throughput achievable in the relatively short timeframe of a microwave-enhanced chemical reaction, the individual control over each reaction vessel in terms of reaction temperature/pressure is limited. In the parallel mode, all reaction vessels are exposed to the same irradiation conditions. In order to ensure similar temperatures in each vessel, the same volume of the identical solvent should be used in each reaction vessel because of the dielectric properties involved [86]. As an alternative to parallel processing, the automated sequential synthesis of libraries can be a viable strategy if small focused libraries (20-200 compounds) need to be prepared. Irradiating each individual reaction vessel separately gives better control over the reaction parameters and allows for the rapid optimization of reaction conditions. For the preparation of relatively small libraries, where delicate chemistries are to be performed, the sequential format may be preferable. This is discussed in more detail in Chapter 5. [Pg.81]

The RC1 reactor system temperature control can be operated in three different modes isothermal (temperature of the reactor contents is constant), isoperibolic (temperature of the jacket is constant), or adiabatic (reactor contents temperature equals the jacket temperature). Critical operational parameters can then be evaluated under conditions comparable to those used in practice on a large scale, and relationships can be made relative to enthalpies of reaction, reaction rate constants, product purity, and physical properties. Such information is meaningful provided effective heat transfer exists. The heat generation rate, qr, resulting from the chemical reactions and/or physical characteristic changes of the reactor contents, is obtained from the transferred and accumulated heats as represented by Equation (3-17) ... [Pg.118]

These reviews can be either in addition to or combined with periodic process hazard analyses (PHAs) by using methods such as what-if analysis and HAZOP studies. The latter should consciously focus on identifying scenarios in which intended reactions could get out of control and unintended reactions could be initiated. One means of accomplishing this as part of a HAZOP study has been to include chemical reaction as one of the parameters to be investigated for each study node. Johnson and Unwin (2003) describe other PHA-related approaches for studying chemical reactivity hazards. [Pg.30]

Reaction activation parameters, 14 627 Reaction carrier, 14 43 Reaction control, 21 843-846. See also Chemical reactions Reaction coordinate, 21 337 Reaction dynamics, in kinetic studies, 14 628-629... [Pg.788]

A small selection of available software is given in Table 5.1. MADONNA is very user-friendly and is used in this book. This recent version has a facility for parameter estimation and optimisation. MODELMAKER is also a more recent powerful and easy to use program, which also allows optimisation and parameter estimation. ACSL has quite a long history of application in the control field, and also for chemical reaction engineering. [Pg.226]

The process control of the post-exposure bake that is required for chemically amplified resist systems deserves special attention. Several considerations are apparent from the previous fundamental discussion. In addition for the need to understand the chemical reactions and kinetics of each step, it is important to account for the diffusion of the acid. Not only is the reaction rate of the acid-induced deprotection controlled by temperature but so is the diffusion distance and rate of diffusion of acid. An understanding of the chemistry and chemical kinetics leads one to predict that several process parameters associated with the PEB will need to be optimized if these materials are to be used in a submicron lithographic process. Specific important process parameters include ... [Pg.51]

The idea that an activated complex or transition state controls the progress of a chemical reaction between the reactant state and the product state goes back to the study of the inversion of sucrose by S. Arrhenius, who found that the temperature dependence of the rate of reaction could be expressed as k = A exp (—AE /RT), a form now referred to as the Arrhenius equation. In the Arrhenius equation k is the forward rate constant, AE is an energy parameter, and A is a constant specific to the particular reaction under study. Arrhenius postulated thermal equilibrium between inert and active molecules and reasoned that only active molecules (i.e. those of energy Eo + AE ) could react. For the full development of the theory which is only sketched here, the reader is referred to the classic work by Glasstone, Laidler and Eyring cited at the end of this chapter. It was Eyring who carried out many of the... [Pg.117]

In some cases, drug materials are isolated from natural products. In other cases, natural product extraction constitutes the raw material or intermediate for production of the drug via a semisynthetic route. Methods for chemical reactions, product purification, control parameters, and analytical procedures are developed and they form the basis for the chemistry, manufacturing, and control (CMC) information for regulatory application. [Pg.321]

The overall effect of the preceding chemical reaction on the voltammetric response of a reversible electrode reaction is determined by the thermodynamic parameter K and the dimensionless kinetic parameter . The equilibrium constant K controls mainly the amonnt of the electroactive reactant R produced prior to the voltammetric experiment. K also controls the prodnction of R during the experiment when the preceding chemical reaction is sufficiently fast to permit the chemical equilibrium to be achieved on a time scale of the potential pulses. The dimensionless kinetic parameter is a measure for the production of R in the course of the voltammetric experiment. The dimensionless chemical kinetic parameter can be also understood as a quantitative measure for the rate of reestablishing the chemical equilibrium (2.29) that is misbalanced by proceeding of the electrode reaction. From the definition of follows that the kinetic affect of the preceding chemical reaction depends on the rate of the chemical reaction and duration of the potential pulses. [Pg.42]

The voltammetric response depends on the equilibrium constant K and the dimensionless chemical kinetic parameter e. Figure 2.30 illustrates variation of A f, with these two parameters. The dependence AWp vs. log( ), can be divided into three distinct regions. The first one corresponds to the very low observed kinetics of the chemical reaction, i.e., log( ) < —2, which is represented by the first plateau of curves in Fig. 2.30. Under such conditions, the voltammetric response is independent of K, since the loss of the electroactive material on the time scale of the experiment is insignificant. The second region, —2 < log( ) < 4, is represented by a parabolic dependence characterized by a pronounced minimum. The descending part of the parabola arises from the conversion of the electroactive material to the final inactive product, which is predominantly controlled by the rate of the forward chemical reaction. However, after reaching a minimum value, the peak current starts to increase by an increase of . In the ascending part of the parabola, the effect of... [Pg.46]


See other pages where Chemical reaction control parameters is mentioned: [Pg.188]    [Pg.234]    [Pg.109]    [Pg.103]    [Pg.840]    [Pg.1917]    [Pg.260]    [Pg.388]    [Pg.270]    [Pg.359]    [Pg.1304]    [Pg.944]    [Pg.55]    [Pg.277]    [Pg.332]    [Pg.246]    [Pg.5]    [Pg.995]    [Pg.36]    [Pg.125]    [Pg.187]    [Pg.400]    [Pg.11]    [Pg.168]    [Pg.3]    [Pg.18]    [Pg.63]    [Pg.152]    [Pg.90]    [Pg.76]    [Pg.30]    [Pg.43]    [Pg.74]    [Pg.42]   
See also in sourсe #XX -- [ Pg.126 ]




SEARCH



Chemical control parameters

Chemical parameters

Chemical reaction parameter

Chemical-controlled reaction

Chemically controlled

Control chemical reaction

Control parameters

Controlling parameter

Reaction parameter

© 2024 chempedia.info